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Abstract 

 

A new drug's discovery and development are typically thought of as an extremely difficult process that requires a lot of 

time and resources. Therefore, to improve the effectiveness of the drug discovery and development process, computer-

aided drug design methodologies are currently used extensively. Structure-based drug design and ligand-based drug design 

approaches are known as particularly effective and powerful techniques in the field of drug discovery and development, 

among other Computer aided drug design approaches that are considered promising techniques based on their necessity. 

These two approaches can be used in conjunction with molecular docking for lead identification and optimization in virtual 

screening. In recent years, the pharmaceutical industry and several academic fields have increasingly embraced 

computational methods to increase the efficiency and effectiveness of drug development. By the way of CADD we 

minimize the risks as well as save time and money and the CADD is more economical than others. This process is most 

valuable for future prospects. 

 

Keywords: Computer-aided drug discovery, structure-based drug design, ligand-based drug design, Virtual screening, 

and Molecular docking, QSAR, Targeted Protein. 

 

INTRODUCTION 

 

The process of computer-aided drug design (CADD) includes numerous tools and strategies that aid in different phases 

of drug design, cutting down on the expense of research and shortening the time it takes to produce the drug. There are 

few comparable processes in the commercial world for drug discovery and creating new medicines since they are so time-

consuming, expensive, complex, and dangerous. To speed up the procedure, the pharmaceutical industry frequently uses 

computer-aided drug design (CADD) methods. Utilizing computational techniques at the lead optimization stage of drug 

development offers significant cost savings. 

 

Pharmacological research laboratories invest a lot of money and time in the various stages of drug discovery, starting with 

the identification of therapeutic targets [1,2], candidate drug discovery, and drug optimization through extensive pre-

clinical and clinical experiments to evaluate the efficacy and safety of newly developed drugs. The big pharmaceutical 

firms have made significant investments in the routine Ultra-High Throughput Screening (UHTS) of enormous quantities 

of "drug-like" compounds. [3,4] Simultaneously, virtual screening is being used more and more in medication design and 

optimization. [5-7] In-depth understanding of the illness targets, metabolic pathways, and therapeutic toxicity can be 

attained by recent developments in DNA microarray assays, which study thousands of genes involved in a disease. [8] 

 

Empirical molecular mechanics, quantum mechanics, and, more recently, statistical mechanics are some of the theoretical 

techniques available. Explicit solvent effects can now be included thanks to this most recent development. High-quality 

computer graphics, which are primarily supported by workstations, provide the basis for all of this work. [9] 

 

The discovery and development of successful drugs are generally recognized as a very complex process that costs billions 

of dollars and requires a minimum of 12 years to complete. If this time is insufficient, the risk of failure increases to nearly 

90%, and nearly 70% of funds are spent on failure due to ineffectiveness or negative side effects through clinical trials. 

CADD is therefore employed to solve these challenges. [10-11] 
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Figure 1: Traditional process of drug discovery and development. 

 

HISTORY OF CADD: 

 

An Overview of CADD's History P. Ehrich (1909) and E. Fisher introduced the receiver and lock-key idea in the year 

1900. Quantitative structure-activity relationships (QS-AR) as a concept were developed in the 1970s. 2-Dimensional, 

retroactive analysis; The era of molecular modeling was launched in the 1980s by computer-aided design (CADD), X-ray 

crystallography, multidimensional NMR, and computer graphics. In the 1990s, more contemporary methods including 

combinatorial chemistry, high throughput screening, and human genome bioinformatics were brought to the cutting-edge 

field of medical science. 

 

DRUG DISCOVERY PROCESS: 

 

Creating a new drug is a difficult process that takes 12 to 15 years and more than $1 billion to complete from the initial 

idea to the launch of the finished product. The academic, clinical, and business worlds are just a few of the places where 

a goal notion could originate. Before identifying a target for an expensive drug discovery program, supporting evidence 

may take many years to accumulate. Once a target has been chosen, the pharmaceutical industry and, more recently, 

certain academic institutions have expedited several early processes to find compounds with features conducive to 

developing safe medications. Pharmacokinetics and drug disposal; product characterization; development of formulation, 

delivery, and packaging 

• The Preclinical Toxicology Test and the IND Application 

• A bioanalysis tests. 

• Trials in medicine. [12] 
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Figure 2: CADD Process 

 

MAJOR TYPES OF APPROACHES IN CADD  

 

The Approaches are mainly divided into two types. 

 

1. Structure-based drug design or direct approach  

2. Ligand-based drug design or indirect approach 

 

 
Figure 3: General Representation of workflow for CADD. [13] 
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1. Structure-based drug design or Direct approach 

  

In SBDD, the target protein's structure is known and interaction or bio-affinity for all compounds tested is calculated 

following the docking method to create a novel therapeutic molecule that interacts more favorably with the target protein 

[13].  

 

 
Figure 4: Layout of SBDD 14 

Overview of the process involved in SBDD  

 

Before the optimized lead enters clinical trials, SBDD undergoes some cycles. The target protein is first isolated, then 

purified, and then its structure is determined using one of three primary techniques:  

1. X-ray crystallography 

2. Homology modeling  

3. NMR (Nuclear magnetic resonance) 

 

Utilizing substances that are added to a chosen area (active site) of the protein after the virtual screening of various 

databases. Based on their interactions with the target protein's active site, these substances are graded and ranked according 

to their steric, hydrophobic, and electrostatic properties. Biochemical assays are used to test the top-ranked substances. 

 

The second cycle involves figuring out the protein's structure in association with the first cycle's most promising lead, the 

one with the least amount of in-vitro micro-molar inhibition. It also displays the compound's binding sites. 

 

 
Figure 5: Steps involved in SBDD.[15] Docking 

 

Target protein and binding site Identification  
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The fundamental phase of SBDD is target protein identification [16]. The binding site of the target macromolecular gave 

unambiguous information regarding the interactions between proteins and ligands, post-docking dynamics, and hydrogen 

bond formation, which aids in the calculation of the optimal pharmacophores for the "new" ligand [17]. Integrative 

structure biology techniques, including NMR and X-ray crystallography, are used to experimentally determine the binding 

sites in the 3D structure of the target macromolecule. [18]. 

When the target protein is figured out, the next step is to locate the binding pocket. Where the ligand binds and has the 

intended or therapeutic action in a very small cavity. These techniques provide information for mapping binding sites 

related to energy interactions and Van der Waals forces. Numerous techniques have been created via energy interaction 

calculations specifically for SBDD for binding site mapping, and these techniques help identify the exact target protein 

locations that interact with helpful functional groups on medications. The protein Q-site Finder is used to identify 

these.[19] 

The Q-site Finder approach is frequently employed for predicting binding sites and it aids in calculating the VDW 

interaction between the protein and methyl probe (a tiny organic chemical), which are ranked according to their overall 

interaction. Finding the VDW interaction is followed by the target protein's binding cavity being docked. [20]. 

 

Molecular Docking  

 

The atomic-level interaction between a tiny chemical and a protein is modeled using the virtual modeling technique known 

as molecular docking. The behavior of tiny compounds in the target protein's binding site is also characterized using this 

method. [21,22].  

The docking approach consists of two main steps: the prediction of the ligand conformation and the accurate binding of 

the ligand into the target active site. For this reason, structure-based drug design (SBDD) frequently employs this 

technique. This technique is used to examine molecular events such as ligand binding posture and intermolecular 

interaction. [23]. In the absence of knowledge about the binding site, having complete information about the binding site's 

location improves docking efficiency. The position or active site within a protein can be found using some internet tools 

like -GRID, POCKET, etc. Some varieties of molecular docking include Flexible protein docking and Flexible ligand 

search docking Three different sorts of algorithms are created to deal with the flexibility of the ligand in the flexible ligand 

search docking. Additionally, there are three sub-types of algorithms: stochastic, systematic, and simulation. [24]. The 

degree of freedom is analyzed using a systematic algorithm. By fragmenting the task, it can be active. It is among the 

methods that are most frequently applied. Molecules' rotatable bonds are rotated 360 degrees at a preset increment rate in 

one method known as the search strategy. For ligand flexibility or in the database method, the pre-generated are used or 

exploited. The likely functions known to be used by the Moute-Carlo (MC) and genetic algorithm methods minimally 

influence whether a modification is accepted or rejected. [24,25,26] 

 

Scoring function  

 

A docking program can explore the ligand-binding site with the aid of the scoring function. Calculating the binding affinity 

between the protein and ligand functions also benefits from scoring functions. The force field's scoring functions are 

classified into empirical, knowledge-based, and machine learning categories (ML) [27,28,29] 

The intermolecular forces like electrostatic and VDW forces are used to calculate the traditional force-field-based scoring 

functions. A coulombic formulation is used to determine the electrostatic terms. The empirical scoring function, which is 

used for predicting affinity and posture, is calculated using the number of atoms in the ligand-target protein. [30]. Entropy, 

hydrogen bonds, and solutions are some extensions of forces-field-based scoring functions. In the treatment of hydrogen 

bonds and forms of energy functions, some software programs are used, such as DOCK [31,32,33], GOLD [34], and Auto 

Dock [35], which improve the accuracy in predicting binding energy by refined with linear interaction energy and free 

energy perturbation methods in the docking with force field-based functions. [36,37,38]. Hydrogen bonds, ionic bound, 

hydrophobic effects, hydrophilic forces, and binding entropy are some of the components that make up the empirical 

scoring system. Regression analysis of ligand-protein complexes yields a correlation that is multiplied by the binding 

energy components, which is then added up to produce a final score. [39-43] Various computer programs, including LUDI 

[44], PLP [40, 41, 45], and Chem Score [46], are used to handle the empirical scoring functions. The statistical analysis 

of crystal structures of ligand-protein complexes, which determined the interatomic distances between the ligand and 

protein [47–52], is a prerequisite for knowledge-based scoring functions. A few variables or pieces of software, such as 

Drug Score [53], Silloli [54], PMF [46], and Bleep, are employed in knowledge-based functions. [47]. 
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Figure 6: Process of Docking [51] 

 

2. Ligand-based drug design or indirect approach  

 

The analysis of ligands known to interact with a target of interest is a component of the ligand-based computer-aided drug 

discovery (LBDD) method. These techniques examine the 2D or 3D structures of a group of reference compounds that 

are known to interact with the target of interest The main objective is to represent these compounds in a fashion that 

preserves the physicochemical characteristics most crucial to their desired interactions while excluding irrelevant data. 

Since it does not require understanding the structure of the target of interest, it is regarded as an indirect approach to drug 

discovery. The building of a quantitative structure-activity relationship (QSAR) model, which extrapolates biological 

activity from chemical structure, or the selection of compounds based on chemical similarity to known actives using some 

similarity measure, are the two main methods used in LBDD. The techniques are used for hit-to-lead and lead-to-drug 

optimization, as well as the optimization of DMPK/ADMET characteristics. They are also used for in silico screening for 

new compounds with the desired biological activity The similar property principle, according to which structurally similar 

compounds are expected to have comparable properties, is the foundation for LBDD. [52] LBDD methods, as opposed to 

SBDD methods, can also be used when the biological target's structure is unclear. Furthermore, active substances found 

using ligand-based virtual high-throughput screening (LB-VHTS) techniques are frequently more potent than those found 

using SB-VHTS techniques. [56] 

 

QSAR  

 

The QSAR method is crucial to the process of optimizing drugs. The QSAR method is employed to quantify the 

relationship between a group of chemicals' chemical structure and biological function [57,58]. The created QSAR model 

is employed as a guiding tool for determining which compounds should be modified as well as for optimizing the active 

component to increase pertinent biological activity. The methods some are used in QSAR  

1. Determine the optimal ligand by experimentally measuring the target biological activity's value. 

2. Ascertain the physical and chemical characteristics of molecules using molecular descriptors. 

3. The discovery of a link between molecular description and biological action. 

4. QSAR model for statistical stability was tested last. 

 

The work-flow of the QSAR method  

 

First, determine or choose the group of molecules or compounds that exhibit the desired biological activity as assessed 

experimentally. Once the molecules have been chosen, they are subsequently studied in the silico-model utilizing quantum 

mechanical or molecular mechanism techniques [59,60-63]. The molecular descriptors are created to define the chemical 

characteristics of molecules after the active ligand has been identified. Molecular descriptors that are appropriate given 

the Physico-chemical characteristics of molecules are determined. Each molecule has a unique molecular "Fingerprint" 

that is created using molecular descriptors. To create molecular descriptors, knowledge-based, molecular mechanical, or 

quantum chemical methods are used. A mathematical relationship that explains the variety of molecules' biological activity 

was developed using molecular descriptors. The created models are tested for statistical robustness and predictive ability 

in the last step using validation procedures (internal and external). 

 

Molecular Descriptors  

 

Properties like molecular weight, geometry, volume, surface areas, ring content, rotatable bonds, interatomic distances, 

bond distances, atom types, planar and nonplanar systems, molecular walk counts, electronegativities, polarizabilities, 

symmetry, atom distribution, topological charge indices, functional group composition, aromaticity indices, solvation 
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properties, and many others can be included in a molecular descriptor.[64] These descriptors are produced using 

procedures that are knowledge-based, graph-theoretical, molecular mechanical, or quantum mechanical [65,66], and they 

are categorized based on the dimensionality of the chemical representation from which they are computed. [67] scalar, 

one-dimensional (1D) physical characteristics like molecular weight; 3D molecular conformation-derived descriptors; 

2.5D descriptors derived from molecular configuration; and 2D descriptors generated from the molecular constitution. 

However, these various levels of complexity overlap, with the more complicated descriptions frequently using details 

from the simpler ones. 

 

SOFTWARE FOR GENERAL PURPOSE MOLECULAR MODELING [68]  

 

For workstations, minicomputers, and supercomputers (SGI, Sun, Cray, etc.)  

• AMBER—Peter Kollman and coworkers, UCSF.  

Computer-assisted model building, energy minimization, molecular dynamics, and free energy perturbation calculations.  

• Midas Plus—UCSF Computer Graphics Laboratory.  

• V CHARMM—Martin Karplus and co-workers, Har-vard.  

• QUANTA/CHARMm—Molecular Simulations Inc. (MSI) molecular/drug design, QSAR,   quantum chemistry.  

• X-ray & NMR data analysis Insight/DISCOVER— Biosym, Inc. Now MSI and Biosym became Accelrys Inc.  

• SYBYL—Tripos, Inc.  

• ECEPP—Harold Scheraga and coworkers, Cornell  

• MM3—Norman Allinger and coworkers, Georgia  

 

For personal computers (Apple, Compaq, IBM, etc.)  

• Alchemy III—Tripos, Inc.  

• Desktop Molecular Modeller—Oxford Elec. Publishing Molecular Modeling Pro—Window Chem Software Energy 

minimization, QSAR (surface area, volume, logP), etc.  

• PC MODEL—Serena Software.  
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ADVANTAGES OF CADD  

 

• By using it, we can cut back on biological and synthetic testing [69]. 

• By excluding molecules with undesired qualities (low effectiveness, weak ADMET, etc.) using in silico filters, it 

provides the most promising therapeutic candidate [70]. 

• It is a quick, automatic, cost-effective, and time-saving approach. 

• We can learn about the pattern of drug-receptor interaction through it. 

• In comparison to conventional high throughput screening, it provides compounds with high hit rates through scanning 

vast libraries of compounds in silico [71]. 

• These strategies reduce the likelihood of failures during the last stage.  

 

CONCLUSION  

 

Computer plays a vital role in all the fields related to pharmacy [72]. Computer-aided drug design (CADD) is the most 

efficient method in the area of drug discovery and development, with the help of CADD we can find the most promising 

drug candidate in a very cost-effective way. It consistently offers hope for advancement in the field of medication 

discovery. Because so many excellent studies have been completed in recent years using computer-aided drug design, it 

will be crucial in the near future. With the advancements made to date, computer-aided drug design has a bright future in 

helping to find many more cures. 
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