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Abstract 

Autism Spectrum Disorders (ASD) are a group of heterogeneous neurodevelopmental disorders with an 

estimated worldwide prevalence of 1-2%. Although it is highly heritable, the contribution of environmental 

factors and risk associated genes on the aberrant brain development is not well understood. In this review, we 

summarise some of the key risk factors and explore ASD associated cellular pathology from the perspective of 

the four predominant cells in the brain; neurons, oligodendrocytes, microglia and astrocytes. Further, we discuss 

the contributions of the associated cellular pathology to the three common hypotheses of ASD. We highlight the 

major neuro-pathologies underlying ASD, however more research is needed to ensure appropriate and efficient 

therapies can be directed towards ASD. 
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1. Introduction 
Autism spectrum disorders (ASD) are a group of 

complex neurodevelopmental disorders 

characterised by deficits in social communication 

and interaction, restrictive and repetitive behaviours 

(American Psychiatric, 2013) and can also involve 

sensory abnormalities (Adamson, O'Hare, & 

Graham, 2006; Wiggins, Robins, Bakeman, & 

Adamson, 2009). Symptoms associated with ASD 

emerge during infancy and this disorder is most 

commonly diagnosed in early childhood. Due to 

better diagnosis, the prevalence of ASD has 

increased over the years (Baio et al., 2018; Idring et 

al., 2015), with recent reports suggesting that as 

many as 1 in 59 have ASD (Baio et al., 2018), with 

an estimated prevalence of 1 in 88 in the United 

Kingdom (Brugha et al., 2012). The ever-changing 

landscape associated with diagnosis and genetics of 

ASD has made it difficult to estimate the true 

prevalence in the population. ASD is more 

commonly diagnosed in males, with ratios 

suggesting around four times as much compared to 

females (Scott, Baron-Cohen, Bolton, & Brayne, 

2002). 

This article aims to briefly review the risk factors and 

genetics for autism spectrum disorders and will then 

go on to explore the contribution of neural lineage 

cells to the pathogenesis of this disorder. 

2. Risk Factors Associated with ASD 
It is now well established that ASD is caused by 

aberrant brain development, however the causal 

links are currently unknown. Although ASD is 

highly heritable, environmental factors also play a 

key role in the aetiology of these disorders. 

2.1 Prenatal risk factors 

Many risk factors have been associated with ASD 

both during the prenatal period and early infancy. 

Advanced maternal age of over 35 years has been 

commonly associated with an increased risk of the 

offspring developing ASD (D. Bilder, Pinborough-

Zimmerman, Miller, & McMahon, 2009; 

Pinborough-Zimmerman et al., 2011; K. Williams, 

Helmer, Duncan, Peat, & Mellis, 2008), with some 

suggesting being over 30 years could also be a risk 

(Idring et al., 2014). Additionally, advanced paternal 

age has also been associated with increased risk 

(Ben Itzchak, Lahat, & Zachor, 2011). Furthermore, 

males are diagnosed earlier if they have older 

parents (Darcy-Mahoney et al., 2016). 

Demographic factors also have been implicated 

with increased risk for ASD, where people of 

Caucasian ethnicity seem to be at increased risk 

(Pinborough-Zimmerman et al., 2011). 

Maternal obesity has been positively associated with 

an increased risk for ASD (Y.-M. Li et al., 2016). 

Low birth weight, defined as a newborn weighing 

less than 2500g (Blanc & Wardlaw, 2005) and 

prematurity (often associated with a low birth 

weight) have also been shown to contribute towards 

an increased risk of ASD (Ben Itzchak et al., 2011; 

Maramara, He, & Ming, 2014; K. Williams et al., 

2008). Additionally, increased weight gain during 

pregnancy (D. A. Bilder et al., 2013; Windham et 

al., 2019) and poor nutrition (Geetha, Sukumar, 

Dhivyadeepa, Reddy, & Balachandar, 2019) have 

been linked to childhood ASD. 

In addition to demographic and maternal factors, a 

range of obstetric complications have been 

associated with increased risk of ASD including 

fetal hypoxia (Burstyn, Wang, Yasui, Sithole, & 

Zwaigenbaum, 2011; Froehlich-Santino et al., 

2014), high maternal blood pressure (Polo-Kantola 

et al., 2014) and respiratory distress (Froehlich-

Santino et al., 2014). 

Emerging studies looking at maternal mental health 

and high functioning ASD phenotypes show a 

positive association. Poor mental health, particularly 

depression and anxiety which have become 

increasingly prevalent during pregnancy (Heron, 

O'Connor, Evans, Golding, & Glover, 2004; 

Janssen et al., 2018; Lockwood Estrin et al., 2019), 

have often been associated with adverse effects on 

the offspring both physically and cognitively (Glynn 

et al., 2018; Kataja et al., 2019; Y. Liu et al., 2012; 

O'Connor, Heron, Golding, Beveridge, & Glover, 

2002; Uguz et al., 2013). Both prenatal mental 

health (Hagberg, Robijn, & Jick, 2018) and the use 

of antidepressants, including the commonly 

prescribed selective serotonin reuptake inhibitors 

(SSRIs), during pregnancy have been associated 

with an increased risk of ASD (Gidaya et al., 2014; 

Hviid, Melbye, & Pasternak, 2013; Sujan et al., 

2017).. 

2.2 Environmental risk factors 

Exposure to neurotoxins, malnutrition associated 

with sociodemographics and medication taken in 

pregnancy during the critical period of development 

can have an accumulative effect on the risk of 



Savory, K., Syer, Y. A.     Advances in the understanding of cellular pathogenesis associated with Autism Spectrum Disorder 

__________________________________________________________________________________
98                                                                                                                                                 https://jrtdd.com 

 

developing this neurodevelopmental disorder. 

Studies have shown that exposure to a number of 

toxicants in the environment increase the risk of ASD 

during the prenatal period and after birth, including 

pesticides, air pollutants, diesel, nitrogen dioxide and 

living in an urban environment (Chang, Cole, & 

Costa, 2018; Flores-Pajot, Ofner, Do, Lavigne, & 

Villeneuve, 2016; Kalkbrenner, Schmidt, & 

Penlesky, 2014; Lauritsen et al., 2014). However, one 

large cohort study suggested that only exposure to a 

small percentage of neurotoxicants were associated 

with increased risk of ASD (Talbott et al., 2015). 

Increasing evidence has suggested that inflammation 

as a result of the physiological stress response due to 

maternal infection and immune activation is 

associated with an increased risk in the offspring 

developing ASD (Careaga, Murai, & Bauman, 

2017). Maternal infections (Atladóttir et al., 2010; 

Visser et al., 2013) and influenza (Zerbo et al., 2013) 

during pregnancy and autoimmune diseases (Vinet et 

al., 2015) have been associated with increased risk 

and earlier diagnosis of ASD. Evidence has 

suggested that maternal immune activation leads to 

localised loss of inhibitory neurons (Shin Yim et al., 

2017) and is associated with a certain profile of gut 

bacteria that promote inflammation (Caprioli, 

Pallone, & Monteleone, 2008; S. Kim et al., 2017). 

Gastrointestinal problems and altered gut microbiota 

in patients with ASD have also been reported 

(Finegold et al., 2002; F. Liu et al., 2019; Valicenti-

McDermott et al., 2006; B. L. Williams, Hornig, 

Parekh, & Lipkin, 2012), with one study showing a 

positive association between ASD severity and 

gastrointestinal symptoms (Adams, Johansen, 

Powell, Quig, & Rubin, 2011). 

In addition to the gut, nutrient deficiency has also been 

associated with ASD. Many studies have suggested a 

link between vitamin D deficiency prenatally and in 

children with autistic traits and ASD (Bener, Khattab, 

& Al-Dabbagh, 2014; Bener, Khattab, Bhugra, & 

Hoffmann, 2017; Vinkhuyzen et al., 2018). Maternal 

deficiency in many other nutrients including iron, 

zinc and vitamin B9 have also been associated with 

ASD (Nuttall, 2017). 

3. Genetics Associated with ASD 
The wide phenotypic variability of ASD along with 

twin studies suggest a strong association of genetics 

towards aetiology (Constantino et al., 2013; 

Ozonoff et al., 2011; Rosenberg et al., 2009). 

Whole exome sequencing (WES) has been a 

powerful tool to highlight genetic associations with 

Autism. One such study suggested that all de novo 

changes (including missense mutations and copy 

number variations; CNVs) account for as much as 

30% of ASD diagnoses (Iossifov et al., 2014). WES 

has discovered 11 de novo mutations in protein-

coding genes including FOXP1, GRIN2B, SCN1A 

and LAMC3 (O'Roak et al., 2011). A further large 

study utilising this method looked at data from 

almost 12,000 ASD cases and additional controls 

(Satterstrom et al., 2018). This study revealed 102 

risk genes for ASD, 31 of which were novel. Whole 

genome sequencing has also uncovered de novo 

mutations associated with ASD, revealing that the 

majority of these mutations were paternally 

inherited, however clustered de novo mutations 

(within 20kb) were mostly maternally inherited and 

in close proximity to CNVs (Yuen et al., 2016).  

Genome-wide association studies (GWAS) have 

been utilised to study large data sets to uncover de 

novo mutations, single nucleotide polymorphisms 

(SNPs) and CNVs associated with ASD. A recent 

large GWAS looking at data on 18,381 subjects 

with ASD and 27,969 controls highlighted five loci 

associated with increased risk of ASD in 

chromosomes 1, 7, 8 and 20 (Xia et al., 2013). 

Specifically, the genes linked to these loci included 

PTBP2 (1p21.3), SRPK2 (7q22.3), SOX7, PINX1 

(8p23.1), and NKX2-2, NKX2-4 (20p11.23), 

MACROD2 (20p12.1) (Grove et al., 2019), a 

number of which have been implicated in 

neurodevelopment. Additionally, SNPs in 1p13.2 

including the TRIM33 gene showed links with 

autism. Additionally, three genes essential for 

neuronal function; CACNA1C, MECP2 and PTEN 

have also been associated with increased risk of 

Autism (Busch et al., 2019; J. Li et al., 2015; Wen et 

al., 2017). 

A number of other GWAS studies have highlighted 

CNVs associated with an increased risk of autism. 

CNVs were found in over a quarter of patients with 

ASD in a Greek population, with the majority being 

deletions (Oikonomakis et al., 2016). Rare CNVs 

are higher in patients with ASD compared to 

controls (Pinto et al., 2010) with a gene enrichment 

analysis showing implicated genes were associated 

with neuronal development and function. Another 

study showed duplications at 1q21.1 and 15q11-13 

and deletions at 16p11.2 and 22q11.21 were 
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associated with risk for ASD (Crespi & Crofts, 

2012). 

One study suggested a large number of SNPs in 

5p14.1 to be associated with an increased risk of 

autism, however these did not reach genome-wide 

significance (Ma et al., 2009). A further study 

looking at this same region found strong 

associations in SNPs between the cadherin genes; 

CDH9 and CDH10 (K. Wang et al., 2009). A 

GWAS meta-analysis of patients with ASD and 

controls found a number of SNPs in genes at 

10q24.32 showed genome-wide significance 

(Autism Spectrum Disorders Working Group of 

The Psychiatric Genomics, 2017). Genes in this 

implicated region are associated with a number of 

neurodevelopmental processes. Further, a small 

deletion consisting of five genes (MVP, CDIPT1, 

SEZ6L2, ASPHD1 and KCTD13) in the 16p11.2 

region were found to be associated with ASD 

suggesting a minimal deletion region for ASD risk 

(Crepel et al., 2011). 

A table of specific gene functions is provided for 

genes discussed in this section (table 1). 

 

Table 1 

Physiological function of genes associated with increased risk of ASD 

 

Gene Specific gene function Chromosomal 

location 

Neurogenesis 

PTBP2 Crucial for axon development through alternative splicing (M. Zhang 

et al., 2019) and maturation of neurons (Q. Li et al., 2014). 

1p21.3 

EFA6 Involved in axonal transport and regeneration (Eva, Koseki, 

Kanamarlapudi, & Fawcett, 2017) and neuronal morphogenesis, 

particularly the development of dendrites (Sakagami et al., 2007; 

Sakagami, Matsuya, Nishimura, Suzuki, & Kondo, 2004; Sironi et al., 

2009). 

10q24.32 

PITX3 Required for optimal development of Mesodiencephalic dopamine 

neurons (Kouwenhoven, von Oerthel, & Smidt, 2017; Le, Zhang, Xie, 

Li, & Dani, 2015). 

10q24.32 

KCTD13 Associated with the development of cortical neurons (Gladwyn-Ng et 

al., 2016) and synaptic transmission (Escamilla et al., 2017). 

16p11.2 

SEZ6L2 Seizure 6-like protein. Essential for the development of dendrites and 

neurites (Boonen et al., 2016; Yaguchi et al., 2017) and connectivity of 

synapses (Gunnersen et al., 2007). 

16p11.2 

MACROD2 Expressed in hippocampal neurons during development and may be 

involved in neurogenesis (Ito et al., 2018), although a physiological role 

has yet to be identified. 

20p12.1 

NKX2-2 Implicated in the development of dopamine neurons (Prakash et al., 

2006), motor neurons (Clark et al., 2014; Jarrar, Dias, Ericson, Arnold, 

& Holz, 2015), interneurons and oligodendrocytes (Jarrar, Vauti, 

Arnold, & Holz, 2015; Zhu et al., 2014). 

20p11.22 

NKX2-4 Involved in neurogenesis of cortical (Shen et al., 2017) and 

hypothalamic (Manoli & Driever, 2014) neurons. 

20p11.23 

Synaptogenesis 

CHD9 Regulates synapses in the hippocampus (M. E. Williams et al., 2011) 

and has been implicated in chromatin organisation (Ooga et al., 2018). 

5p14.1 

CHD10 Involved in the regulation of E/I synapses (Smith et al., 2017). 5p14.1 

SHANK2 Essential for synapse development and plasticity (Ha et al., 2016; 

Wegener et al., 2018). 

11q13.3-q13.4 

Inflammation 
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CUEDC2 Implicated in inflammation (Man & Zhang, 2011). 10q24.32 

NFκB2 Associated with a variety of immune responses (Cubillos-Zapata et al., 

2014; Doyle et al., 2013) and inflammation (Yang et al., 2018). 

10q24.32 

MVP Supresses inflammation through NF-κB signalling (Ben et al., 2019; 

Peng et al., 2016). 

16p11.2 

Cell death 

SPRK2 Regulates neuronal apoptosis through Akt phosphorylation (Jang et al., 

2009). 

7q22.3 

SOX7 Implicated in inhibition of the Wnt pathway (Fan et al., 2018; C. Wang 

et al., 2015). 

8p23.1 

Other   

CDIPT1 Associated with endoplasmic reticulum stress (Thakur et al., 2011). 16p11.2 

 

3.1. Neurexins and Neuroligins 

The CNV syndrome 22q13.3 region associated 

with high incidences of ASD-like behaviour 

includes the SHANK3 gene encoding a synaptic 

scaffolding protein (Durand et al., 2007; Phelan & 

McDermid, 2012). SHANK3 binds to neuroligins 

(Meyer, Varoqueaux, Neeb, Oschlies, & Brose, 

2004), which interact with neurexins to form 

glutamatergic synapses (Craig & Kang, 2007). A 

GWAS of the visual sensitivity phenotype 

associated with ASD showed a SNP in PDZK1, 

located at 1q21.1, was associated with increased 

sensitivity (Goodbourn et al., 2014). Further, PDZ 

domains have been shown to bind to the neuroligin 

NLGN1 (Meyer et al., 2004). Both neurexins and 

neuroligins have been associated with ASD. NLG1 

and NLG4, but not NLG3 and NLG4Y have been 

associated with autism (Ylisaukko-oja et al., 2005) 

with a drosophila model of deficient Nlg2 and Nlg4 

showing abnormalities in social behaviour (Corthals 

et al., 2017). SNPs in NRXN2 and NRXN3 have 

been associated with increased risk of ASD (J. 

Wang et al., 2018), additionally missense mutations 

in NRXN1 were found in two patients with ASD 

(Kim et al., 2008). 

4. Contribution of Neural Lineage Cells 

in the Pathogenesis of ASD 

4.1 Neurons 

ASD is a disorder caused by aberrant 

neurodevelopment. The predominant cells in the 

brain, and thus most likely to be affected by adverse 

neurodevelopment, are neurons and glial cells. 

Neuronal research appears to be the main area of 

study in relation to ASD and a number of neuronal 

cells have been implicated in function, morphology, 

axon guidance and synaptic dysregulation, 

including immature neurons, pyramidal neurons 

located in the prefrontal cortex (PFC), mature 

cortical neurons, inhibitory neurons including 

GABAergic neurons and excitatory neurons. 

Macrocephaly has been associated in a number of 

cases of autism (Courchesne, Carper, & 

Akshoomoff, 2003; McBride et al., 2010) and larger 

brain volume in patients with autism has also been 

reported (Aylward, Minshew, Field, Sparks, & 

Singh, 2002). The cause of macrocephaly is 

unknown, however it may be associated with the 

number, maturity and morphology of neurons. One 

study found that children with autism had 

significantly more neurons in the PFC which 

correlated with increased brain weight (Courchesne 

et al., 2011). The phosphatase and tensin homolog 

(PTEN) gene is clearly associated with 

macrocephaly in ASD (Goffin, Hoefsloot, 

Bosgoed, Swillen, & Fryns, 2001) with a brain 

organoid model harbouring a deletion of this gene 

showing an increase in proliferation of cells leading 

to large sized organoids (Y. Li et al., 2017). 

Conversely, it has been found that larger spine 

densities of pyramidal neurons are associated with a 

smaller brain size (Hutsler & Zhang, 2010). Whilst 

macrocephaly is more prominently reported in 

ASD, microcephaly can also occur in some cases 

(Fombonne, Rogé, Claverie, Courty, & Kruck, 

1999). 

Altered morphology of neurons has been reported in 

many ASD cases which may be related to the 

symptoms of autism. One study showed patients 

with autism have smaller pyramidal neurons in the 

PFC (Jacot-Descombes et al., 2012), an area 

implicated in social behaviour (Anderson, Bechara, 

Damasio, Tranel, & Damasio, 1999). Further, 
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altered morphology of neurons from human cases 

and animal models of ASD have been found in the 

amygdala (Jerzy Wegiel et al., 2015) and 

hippocampus (Griesi-Oliveira et al., 2015); areas 

both associated with the anxiety and emotional-

related memory features of autism (Babaev, Piletti 

Chatain, & Krueger-Burg, 2018; Boucher, Mayes, 

& Bigham, 2012; Bowler, Gaigg, & Gardiner, 

2014). A less-reported symptom of ASD is deficits 

in face processing (Davies, Bishop, Manstead, & 

Tantam, 1994; Grelotti, Gauthier, & Schultz, 2002; 

Joseph & Tanaka, 2003). One study found that 

neurons in the fusiform gyrus, an essential area for 

face processing (Kanwisher, McDermott, & Chun, 

1997), were significantly less dense and reduced in 

number in brains from patients with autism (van 

Kooten et al., 2008). Further, overexpression of 

SHANK2 in neurons; a gene associated with autism 

when defective, was associated with shorter and less 

neurites (Luo et al., 2019). 

Mouse models are a useful tool for understanding 

the mechanisms by which neuronal morphology is 

altered in ASD and many studies have successfully 

recapitulated the key symptoms of autism including 

impaired social behaviour and repetitive behaviour. 

One mouse model exhibiting impaired social 

behaviour showed that the reduced spine pruning in 

pyramidal neurons found in post-mortem brains of 

ASD patients was likely to be caused by impaired 

autophagy as a result of defects in the m-TOR 

pathway (Tang et al., 2014). 

It is not only altered morphology of neurons that has 

been implicated in ASD, but also deficits in 

migration and proliferation. Brains from patients 

with autism show defects in neurogenesis and 

migration of neurons (Jerzy Wegiel et al., 2010). 

Mouse models with Shank3 knockout (KO) 

mutations, which have been associated with autism 

(Boccuto et al., 2013; Durand et al., 2007; Gauthier 

et al., 2009), showed decreased radial glial 

progenitor cells and immature neurons in the 

hippocampus (Cope et al., 2016). A number of 

mouse models have shown that an increase in early 

neurogenesis is associated with deficits in early 

maturity (Orosco et al., 2014) and morphology 

(Arranz et al., 2019). Further, an increase in 

proliferation of progenitor cells has been associated 

with decreased mature pyramidal neurons in a 

mouse model of CNV syndrome 16p11.2 deletion, 

harbouring the MAPK3 gene (Pucilowska et al., 

2015). Deficits in proliferation of cortical neurons 

have been shown in animal models of ASD, 

including a study looking at a knockdown of the 

autism-associated gene Chd8 in primary cortical 

neurons (Xu et al., 2018). A well-established rat 

model found that reduced proliferation was due to 

overexpression of a gene targeting Fzd3 and 

inhibiting the Wnt pathway (Yao, Huang, & He, 

2019), inhibition of this pathway has also been 

associated with increased proliferation of neural 

progenitor cells through reduced transcriptional 

activity of β-catenin (Marchetto et al., 2017). 

The identification of synaptic proteins controlling 

synapse formation and signalling implicated in 

ASD points towards synaptic malformation and 

dysfunction (De Rubeis et al., 2014). For example, 

mutations in synaptic neuroligin genes NLGN3 and 

NLGN4 have been associated with ASD (Jamain et 

al., 2003; Südhof, 2008). Mice with these deletions 

have been shown with synaptic defects (Gutierrez et 

al., 2009; C. Zhang et al., 2009). Mutations in 

synapsins (SYN1, SYN2, SYN3); a family of 

presynaptic proteins that regulate vesicle-mediated 

neurotransmitter release and neurites, have been 

found in individuals with autistic phenotypes, 

suggesting a potentially causative factor of ASD 

(Fassio et al., 2011). Primary neurons from Syn1/2/3 

triple-KO mice display a significant decrease in the 

number of synaptic vesicles (Fornasiero et al., 2012) 

and display impairments in social recognition tests 

and a decreased environmental interest; phenotypic 

of ASD (Greco et al., 2013; Ketzef & Gitler, 2012). 

The SHANK3 gene strongly associated with ASD 

seems to confer its pathology through synaptic 

dysfunction. Neurons lacking in SHANK3 are 

associated with fewer synapses, whereas 

overexpression of SHANK3 results in more mature 

neurons with larger spines (Betancur, Sakurai, & 

Buxbaum, 2009). Furthermore, single-gene 

mutations associated with ASD such as fragile X 

syndrome (FMR1), tuberous sclerosis (TSC1, 

TSC2), neurofibromatosis type-1 (NF1), Angelman 

syndrome (UBE3A), Rett syndrome (MECP2), and 

the PTEN hamartoma tumour syndrome seem to 

mediate their effect through synaptic dysregulation 

(Zoghbi & Bear, 2012). A recent study looking at 

the effect of the KO of Rnf8, linked to ASD, 

demonstrates a 50% increase in the number of 

synapses in cerebellar neurons (Valnegri et al., 

2017). Taken together, it can be argued that synaptic 
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dysfunction plays a major role in the pathogenesis of 

ASD. 

The excitatory-inhibitory (E/I) balance theory of 

autism has become increasingly of interest in recent 

years in an attempt to explain the wide range of 

symptoms and common pathologies associated 

with ASD including repatative behaviours, 

hyperactivity, anxiety and epilepsy (Rubenstein & 

Merzenich, 2003). Evidence from human patients 

has shown increased formation of excitatory 

synapses associated with increased IL-6 in the 

cerebellum of patients (Hongen Wei et al., 2011). A 

mixture of results have been found from studies 

using human induced pluripotent stem cells 

(hiPCSs) derived from ASD patients. Glutamate is 

the most abundant excitatory neurotransmtter in the 

brain (Fonnum, 1984) and decreased levels have 

been shown along with a reduction in synapses of 

neural progenitor cells (Marchetto et al., 2017) and 

mature neurons (Russo et al., 2018). Further, an 

increase in GABAergic neurons; responsible for the 

secretion of the main inhibitory neurotransmitter in 

the brain, has been found in neural progenitor cells 

(Marchetto et al., 2017) and telencephalic organoids 

(Mariani et al., 2015). 

The well-established Shank3 KO model has shown 

impaired morphology of inhibitory neurons with 

longer dendrites, but decreased spine and 

postsynaptic density (Peça et al., 2011) and down-

regulation of a sub-type of inhibitory neuron (Filice, 

Vörckel, Sungur, Wöhr, & Schwaller, 2016), 

however another study showed that activity in both 

inhibitory and excitatory neurons was reduced 

(Huang et al., 2019). Further, mouse models have 

shown a decrease in a type of positive inhibitory 

interneuron (Pucilowska et al., 2015) and 

overproduction of excitatory neurons (Fang et al., 

2014) in upper layers of the cortex. 

The discrepancy between these findings could be 

explained by the different types of inhibitory and 

excitatory neurons in the brain. The Mef2c mouse 

model of autism that displays ASD-like symptoms 

including impaired social interaction showed a 

decrease in excitatory transmission and increase in 

inhibitory transmission in cortical neurons 

(Harrington et al., 2016). Further, a mouse model of 

autism involving the Ib2 KO, associated with 

deficits in motor and cognitive function (Giza et al., 

2010), showed increased excitability through 

enhanced neurotransmission from NMDA 

receptors (Soda et al., 2019). Another potential 

explanation is that the number of neurons do not 

always directly relate to the amount of inhbitory or 

excitatory nerotransmiter release, for example, a 

heterozygous KO of Dyrk1a shows ASD like-

behaviours and increased number of both excitatory 

and inhibitory neurons, but only a significant 

increase in excitatory synapses (Arranz et al., 2019). 

Overall, these findings suggest a predominancy 

excitatory E/I balance could be a factor in the clinical 

phenotypes associated with ASD. 

4.2. Oligodendrocytes 

Oligodendrocytes are the only myelin-forming cells 

of the mamilian central nervous system. In humans, 

half of the brain is composed of white matter, which 

is predominantly made of myelin, and is 500% 

more abundant in comparison to mice (K. Zhang & 

Sejnowski, 2000). Oligodendrocyte pathology has 

been found in patients with ASD. Adults with ASD 

show significantly lower numbers of 

oligodendrocytes (Morgan, Barger, Amaral, & 

Schumann, 2014). Further, pathology has been 

found in the PFC; an area associated with social 

behaviour (Finlay et al., 2015; Franklin et al., 2017; 

Pirone et al., 2018) and increased expression of 

oligodendrocyte markers have been found in the 

hippocampus and PFC, but are significnatly 

decreased in density in part of the hippocampus 

(Vargas, Nascimbene, Krishnan, Zimmerman, & 

Pardo, 2005). Brains from adult autistic patients 

have a lower amount of myelinated thin axons but 

an increase of medium thickness axons in the lateral 

PFC (Trutzer, García-Cabezas, & Zikopoulos, 

2019) and increased myelination in the medial PFC 

(Carmody & Lewis, 2010). This evidence could 

explain some of the social abnormalities seen in 

ASD. 

A number of genes and SNPs implicated in autism 

have been associated with oligodendrocytes. SNPs 

in the the DUSP15 and CD38 genes; involved in 

oligodendrocyte differentiation and development, 

have been found in children with autism (van 

Tilborg et al., 2018; Munesue et al., 2010; Hattori et 

al., 2017) and clearance of degraded myelin is also 

associalted with CD38 (Roboon et al., 2019). 

Chromatin remodelers including CHD7 and CHD8 

have been linked to ASD (Jiang et al., 2013; Xu et 

al., 2018). Loss-of-function Chd7 is associated with 

reduced number of oligodendrocyte progenitor cells 

(OPCs) through apoptosis (Marie et al., 2018). 
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Further, this gene has downstream effects on many 

genes involved in cell surival, proliferation and 

apoptosis [54]. Gene expression studies have also 

shown increased expression of genes associated 

with oligodendrocytes in the cerebellum from 

patients with autism including MBP, MAG, OLIG1, 

OLIG2 (Zeidán-Chuliá et al., 2016). Although 

contrasting results have been found in the BTBR 

mouse model of autism (H. Wei et al., 2016). 

Prenatal hypoxia and inflammation are risks factors 

for ASD. One mouse model using both hypoxia and 

inflammation to cause diffuse white matter injury 

showed autism-like behaviour in the mice. Further, 

they showed impaired maturation of 

oligodendrocytes and delayed myelination (van 

Tilborg et al., 2018). This study supports the notion 

that presence of inflammation contributes towards 

abberant myelination during neurodevelopment. 

Abnormal myelination has further been confirmed 

in two other mouse models of ASD showing both 

deficits in deposition and thickness of the myelin 

sheath (Graciarena, Seiffe, Nait-Oumesmar, & 

Depino, 2019; H. Lee, Thacker, Sarn, Dutta, & Eng, 

2019), with the latter showing decreased 

myelination in areas associated with social 

behaviour, potentially a result of imapired 

maturation of OPCs. On the contrary, another study 

looking into the effect of developmental 

myelination in a mouse model of Timothy 

syndrome, in which a gain-of-function mutation in 

the α1 subunit of the L-type calcium channel Cav1.2 

gives rise to an ASD phenotype, was associated 

with an increase in the number of mature 

oligodendrocytes and myelination (Cheli et al., 

2018). A recent study looking into the effect of 

Cyfip1; a critical gene in 15q11.2 deletion 

syndrome, demonstrate that deletion of this gene 

resulted in a decrease in the myelination in the 

corpus callosum and interfered with the learning 

abilit of rats (Silva et al., 2019). Taken together, 

dysregulation in oligodendrocyte differentiation and 

developmental myelination play an important role 

towards the pathogenic mechanisms of ASD. 

4.3. Microglia 

Microglia are the immune cells of the brain and are 

capable of producing and reacting to a range of 

immune responses by secreting cytokines (Hanisch, 

2002). Brains from autistic patients show increased 

size, density, number and activity of microglia in the 

PFC (Morgan et al., 2010; Tetreault et al., 2012). 

Animal models focusing on neurodevelopment 

have shown abnormal microglial morphology and 

decreased density in the PFC (Sanagi et al., 2019). 

Additionally, a mouse model of 15q11-q13 

duplication showed decreased amount of a 

microglia marker in the amygdala in early postnatal 

mice (Shigemori, Sakai, Takumi, Itoh, & Suzuki, 

2015). TREM2, an immune receptor known to 

regulate the level of neurons by activation of 

microglia, has been shown to be downregulated in 

the autistic brain (Filipello et al., 2018). The study 

demonstrated that Trem2 KO mice display altered 

sociability and was associated with repetitive 

behaviour. It is plausible that either deficient or too 

many microglia along with abnormal morphology 

cause some of the social and anxiety features of 

ASD. 

Microglia activation is another event associated with 

ASD. Active microglia is commonly seen as a sign 

of inflammation in the central nervous system 

(Dheen & Charanjit Kaur and Eng-Ang, 2007). 

Brains from autistic patients show increased 

activation of microglia along with pro inflammatory 

markers in both brain and cerebrospinal fluid (Patel, 

Tsilioni, Leeman, & Theoharides, 2016; Suzuki et 

al., 2013; Vargas et al., 2005). Increased neurotensin 

has been found in some children with autism and 

this peptide was shown to activate microglia 

through stimulation of the m-TOR pathway (Patel 

et al., 2016). Further, rodents injected with a drug 

that increased microglial activation showed ASD-

like behaviour (Zerrate et al., 2007). The glutamate 

receptor mGluR5; shown to decrease microglial 

activation (Loane, Stoica, Pajoohesh-Ganji, Byrnes, 

& Faden, 2009), has been shown to be significantly 

decreased in the brains of patients with autism 

accompanied by increase in pro-inflammatory 

markers (Chana et al., 2015). Research has shown 

that inflammation has an adverse effect on 

neurodevelopment (van der Burg et al., 2015). 

Together, these studies suggest that, at least in part, 

there is an inflammatory pathology in ASD. 

Microglia may also have a role in the physical 

development of neurons. Evidence from brains of 

patients with autism have shown microglia exist in a 

much closer proximity to neurons in patients 

(Morgan et al., 2012). Whilst the phenotypical result 

of this interaction is unknown, research in other 

areas have shown microglia become close in 
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proximity to neurons when motor neurons are 

degenerating in a model of motor neuron disease 

(Toedebusch et al., 2018). Other studies have shown 

prolonged microglial-neuronal contact after 

damage, in particular with the synapses (Wake, 

Moorhouse, Jinno, Kohsaka, & Nabekura, 2009). 

This may be an attempt of synaptic pruning; an 

essential mechanism of neurodevelopment 

(Paolicelli et al., 2011), to counterbalance the 

increased neurogenesis seen in autism. On the other 

hand, it may suggest defective microglia activation 

in ASD. It has been shown that the communication 

between neurons and microglia and deficits in 

synaptic pruning results in impaired social 

behaviour and repetitive behaviours (Zhan et al., 

2014); key features of autism. Another animal 

model of autism (Atg7 deficient) shows an increase 

in the number and density of dendritic spines and 

increased immature synapses as a result of deficits in 

synaptic pruning by microglia (H. J. Kim et al., 

2017). Research has also shown that brains of 

patients with autism have significantly higher 

expression of markers of microglia but neuronal 

markers are significantly decreased in the PFC 

(Edmonson, Ziats, & Rennert, 2014). This could 

suggest i) microglia are attempting to play a 

therapeutic role for defective neurons, ii) microglia 

themselves are defective and are causing neuronal 

harm, potentially through dysfunctional synaptic 

pruning. Furthermore, maternal immune activation; 

one of the risk factors for ASD, may potentially 

mediate its effect through microglial activation, 

which opens up an opportunity for 

immunomodulatory treatment options to rescue 

some of the associated phenotypes of ASD. 

4.4. Astrocytes 

Astrocytes are an integral part of the tripartite synapse 

(Eroglu & Barres, 2010) and play a key role in the 

regulatory control of synaptic function and plasticity, 

(Tewari & Parpura, 2016) which in turn play a key 

role in social behaviour and cognitive functions. 

Astrocytes have been less implicated in ASD 

compared to the three other major types of brain cells 

reviewed here (neurons, oligodendrocytes and 

microglia). This may be due to a reduced 

involvement in these disorders or a lack of research 

into the link between astrocytes and ASD. 

Research has shown contrasting results in regards to 

astrocytes and ASD. In the cerebellum, one study 

reported increased GFAP (Laurence & Fatemi, 

2005); a major marker of astrocytes, whereas another 

study showed a decrease of the astrocytic marker 

AQP4 (Fatemi, Folsom, Reutiman, & Lee, 2008) in 

brains of patients with autism. One explanation for 

these findings is the timing at which astrocytes may 

be more active during development. Earlier in 

development GFAP has been shown to be 

significantly increased, whilst expression decreased 

postnatally in the cerebellum (Vargas et al., 2005). 

This study further showed that whilst expression was 

decreased, there was an increase in protein, 

suggestive of post transcriptional modifications. 

Brains of patients with autism have shown an 

increase in FMRP in astrocytes, a protein essential for 

normal cognitive function (Santos, Kanellopoulos, & 

Bagni, 2014), but a decrease in neurons combined 

with neuronal deficits in the cerebral cortex (Jarek 

Wegiel et al., 2018). This may suggest that astrocytes 

are less affected by ASD and may not represent an 

area where pathology is evident. In support of this, 

typical astrocyte morphology was seen in the 

dorsolateral PFC from patients with autism (T. T. Lee 

et al., 2017) and a mouse model inducible KO of 

Glt1; the glutamate transporter secreted by astrocytes, 

did not show deficits in social behaviour (Aida et al., 

2015). On the other hand, one study showed Fmr1 

astrocyte KO mice had reduced expression of the 

excitatory protein Glt1 in astrocytes and impaired 

glutamate uptake, leading to increased extracellular 

glutamate and was associated with increased activity 

of pyramidal neurons (Higashimori et al., 2016). 

iPSC astrocytes from Rett syndrome patients seem to 

have accelerated differentiation (Andoh-Noda et al., 

2015). When wild-type neurons were cultured in 

conditioned media obtained from these astrocytes it 

led to an alteration in neural connectivity (E. C. 

Williams et al., 2014). Altogether, this research 

suggests that defective astrocytes contribute towards 

impaired neuronal health and the pathology of ASD. 

A summary of ASD risk factors and the 

contribution of neural lineage cells towards the 

pathology of ASD is given in figure 1. 
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Figure 1: Contribution of the risk factors to the cellular pathologies and hypotheses associated with 

ASD.  
Diagram of risk factors, hypotheses of ASD and which neural lineage cells may be linked to these hypotheses. The solid 

arrows denote hypotheses with strong links to the relevant neural lineage cells. The dotted arrow shows a potential link 

between the hypothesis and neural lineage cells. 

4.5. Brain organoids 

Organoids are becoming increasingly popular ways 

to study structure and function of neural cells. There 

are a number of advantages of using 3D cellular 

model organoids over the widely-used 2D neural 

cultures. Organoids are much better models as they 

are able to replicate the development of the 

neocortex (Camp et al., 2015) and are improved 

models to test drugs for treatment due to their more 

complex structure and organisation (Ranga, 

Gjorevski, & Lutolf, 2014); better to recapitulate 

brain pathology over 2D models. Currently, due to 

the relative novelty of this cellular model, very little 

research on cerebral organoids and ASD have been 

conducted. Of the research published it has been 

shown that heterozygous knockouts of the CHD8 

gene replicate results of 2D cell culture in regards to 

differentially expressed genes associated with 

CHD8 and autism (P. Wang et al., 2015; P. Wang 

et al., 2017). One other study looking at 

overproduction of FOXG1 in patient-derived 

organoids showed an overproduction of 

GABAergic inhibitory neurons (Mariani et al., 

2015). Whilst this gene is not directly linked to 

autism, it has been associated with Rett Syndrome 

(Ariani et al., 2008); which involves a number of 

autistic-like features. Further, brain organoids are 

potential models to recapitulate morphological 

phenotypes of ASD, as discussed, the PTEN 

mutation leads to large sized organoids (Y. Li et al., 

2017); consistent with the macrocephaly phenotype 

of this gene mutation. 

5. Clinical Implications and Future 

Perspectives 
To make a difference in the lives of subjects with 

ASD, it is essential to provide a better diagnosis and 

an effective treatment. The therapies that are 

available for ASD varies widely for very young 

children and toddlers. While social and adaptive 

therapies have been recommended for young 

children, behavioural therapies have proven to be 

effective for adults. Due to the complex genetics 

associated with ASD, it is crucial to define and 
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investigate the impact of genetics on brain 

development and cellular pathogenesis such as 

impaired neural maturation and neuroinflammation. 

This information will serve as a basis for the 

development of effective therapies that can alleviate 

some of the symptoms. Furthermore, developing 

and refining the human cellular models that can 

identify a clear neurobiological process is crucial, as 

to develop a platform for the screening of drugs. 
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