Intuitionistic Fuzzy \hat{g}^* Semi Connectedness in Intuitionistic Fuzzy Topological Spaces

S. Pious Missier¹, A. Peter Arokiaraj^{2*}, A.Nagarajan³

¹Head & Associate Professor (Rtd.), Department of Mathematics, Don Bosco College of Arts and Science, (Affiliated to Manonmaniam Sundaranar University, Abishekapatti, Tirunelveli-627 012), Keela Eral, Thoothukudi, Tamil Nadu-628 908, India, *spmissier@gmail.com*

^{2*}Research Scholar (Reg.No-19222232091032), PG and Research Department of Mathematics, V.O.Chidambaram College, (Affiliated to Manonmaniam Sundaranar University, Abishekapatti, Tirunelveli-627 012), Thoothukudi-628 008, India, *petrajsdb@gmail.com*

³Head & Associate Professor (Rtd.), PG and Research Department of Mathematics, V.O.Chidambaram College, (Affiliated to Manonmaniam Sundaranar University, Abishekapatti, Tirunelveli-627 012), Thoothukudi-628 008, India, *nagarajan.voc@gmail.com*

Abstract:

This article is envisioned to navigate *Intuitionistic Fuzzy* \hat{g}^*Semi *Connectedness* in Intuitionistic fuzzy topological spaces. An investigative study on Intuitionistic Fuzzy \hat{g}^*Semi connected spaces, Intuitionistic Fuzzy \hat{g}^*Semi super connected spaces and Intuitionistic Fuzzy \hat{g}^*Semi extremely disconnected spaces is elucidated with proper explanations and examples.

Key Words: Intuitionistic Fuzzy \hat{g}^* Semi Closed set($\mathcal{IF}\hat{g}^*s\mathcal{C}$), Intuitionistic Fuzzy \hat{g}^* Semi Connected Spaces($\mathcal{IF}\hat{g}^*sConS$) and Intuitionistic Fuzzy \hat{g}^* Semi Super Connected Spaces($\mathcal{IF}\hat{g}^*sSConS$) and Intuitionistic Fuzzy \hat{g}^* Semi extremally disconnected Spaces($\mathcal{IF}\hat{g}^*sEDConS$)

AMS Subject Classifications (2000): 54A40, 03F55

I. INTRODUCTION

Zadeh[8] in 1965 opened a new page in Mathematics with fuzzy sets to deal with ambiguity. Chang(1968)[2] established it into fuzzy topology. Atanassov[1] with his cognitive idea brought forth intuitionistic fuzzy set and later Coker[3] generalized it into intuitionistic fuzzy topological spaces. Pious Misser et al.,[5] recently illustrated Intuitionistic Fuzzy \hat{g}^* Semi Closed sets. Taking a lead from there, we proceed ahead to explore Intuitionistic Fuzzy \hat{g}^* Semi connected spaces, Intuitionistic Fuzzy \hat{g}^* Semi super connected spaces and Intuitionistic Fuzzy \hat{g}^* Semi extremally disconnected spaces in Intuitionistic fuzzy topological spaces.

II. PRELIMINARIES

Definition 2.1. [1] Let U be a universal set. Then $\mathbb{G}_{i\bar{f}} = \{ \Box u, \mu_{\mathbb{G}_{i\bar{f}}}(u) \cup U_{\mathbb{G}_{i\bar{f}}}(u) \cup u \Box U \}$ is called as an intuitionistic fuzzy subset (*JFS* in short) in U. Here the functions $\mu_{\mathbb{G}_{i\bar{f}}}: U \to [0,1]$ and $\upsilon_{\mathbb{G}_{i\bar{f}}}: U \to [0,1]$ denote the degree of membership (namely $\mu_{\mathbb{G}_{i\bar{f}}}(u)$) and the degree of non-membership (namely $\upsilon_{\mathbb{G}_{i\bar{f}}}(u)$) of each element $u \Box U$ to the set $\mathbb{G}_{i\bar{f}}$ respectively, and $0 \leq \mu_{\mathbb{G}_{i\bar{f}}}(u) + \upsilon_{\mathbb{G}_{i\bar{f}}}(u) \leq 1$ for each $u \Box U$. The set of all intuitionistic fuzzy sets in U is denoted by *JFS*s(U). For any two *JFS*s $\mathbb{G}_{i\bar{f}}$ and $\mathbb{H}_{i\bar{f}}, (\mathbb{G}_{i\bar{f}} \cup \mathbb{H}_{i\bar{f}})^{C} = \mathbb{G}_{i\bar{f}}^{C} \cap \mathbb{H}_{i\bar{f}}^{C}; (\mathbb{G}_{i\bar{f}} \cap \mathbb{H}_{i\bar{f}})^{C} = \mathbb{G}_{i\bar{f}}^{C} \cup \mathbb{H}_{i\bar{f}}^{C}$.

Definition2.2: [1] If $\mathbb{G}_{i\mathfrak{f}} = \{ \Box \mathfrak{u}, (\mathfrak{u}), \upsilon_{\mathbb{G}_{i\mathfrak{f}}}(\mathfrak{u}) \Box : \mathfrak{u} \Box \mathbb{U} \}$ and $\mathbb{H}_{i\mathfrak{f}} = \{ \Box \mathfrak{u}, \ \mu_{\mathbb{H}_{i\mathfrak{f}}}(\mathfrak{u}), \upsilon_{\mathbb{H}_{i\mathfrak{f}}}(\mathfrak{u}) \Box : \mathfrak{u} \Box \mathbb{U} \}$ be two $\mathcal{IFSs}(\mathbb{U})$, then (a) $\mathbb{G}_{i\mathfrak{f}} \subseteq \mathbb{H}_{i\mathfrak{f}}$ if and only if $\mu_{\mathbb{G}_{i\mathfrak{f}}} \leq \mu_{\mathbb{H}_{i\mathfrak{f}}}$ and $\upsilon_{\mathbb{G}_{i\mathfrak{f}}}(\mathfrak{u}) \geq \upsilon_{\mathbb{H}_{i\mathfrak{f}}}(\mathfrak{u})$ for all $x \in \mathbb{X}$,

(b) $\mathbb{G}_{i\mathfrak{f}} = \mathbb{H}_{i\mathfrak{f}}$ if and only if $\mathbb{G}_{i\mathfrak{f}} \subseteq \mathbb{H}_{i\mathfrak{f}}$ and $\mathbb{G}_{i\mathfrak{f}} \supseteq \mathbb{H}_{i\mathfrak{f}}$,

 $(c) \ {\mathbb{G}_{if}}^{\mathsf{C}} = \{ \Box \ u \Box \Box \ \upsilon_{\mathbb{G}_{if}}(u), \mu_{\mathbb{G}_{if}}(u) \Box : u \Box \Box U \ \} \ (complement \ of \ \ \mathbb{G}_{if}),$

 $(d) \ \mathbb{G}_{\mathfrak{i}\mathfrak{f}} \cup \mathbb{H}_{\mathfrak{i}\mathfrak{f}} = \{ \langle \ \mathfrak{u}, \ \mu_{\mathbb{G}_{\mathfrak{i}\mathfrak{f}}} \ (\mathfrak{u}) \ \lor \ \mu_{\mathbb{H}_{\mathfrak{i}\mathfrak{f}}} \ (x), \ \upsilon_{\mathbb{G}_{\mathfrak{i}\mathfrak{f}}} \ (\mathfrak{u}) \land \upsilon_{\mathbb{H}_{\mathfrak{i}\mathfrak{f}}} \ (\mathfrak{u}) \rangle : \ \mathfrak{u} \in \mathbb{U} \ \},$

(e) $\mathbb{G}_{if} \cap \mathbb{H}_{if} = \{ \langle u, \mu_{\mathbb{G}_{if}}(u) \land \mu_{\mathbb{H}_{if}}(x), \upsilon_{\mathbb{G}_{if}}(u) \lor \upsilon_{\mathbb{H}_{if}}(u) \rangle : u \in \mathbb{U} \},\$

(f) $(\mathbb{G}_{if} \cup \mathbb{H}_{if})^C = \mathbb{G}_{if}^C \cap \mathbb{H}_{if}^C$ and $(\mathbb{G}_{if} \cap \mathbb{H}_{if})^C = \mathbb{G}_{if}^C \cup \mathbb{H}_{if}^C$.

(h) $\tilde{\mathbf{0}} = \langle \mathbf{u}, 0, 1 \rangle$ (empty set) and $\tilde{\mathbf{1}} = \langle \mathbf{u}, 1, 0 \rangle$ (whole set).

Definition 2.3. [3] An intuitionistic fuzzy topology (\mathcal{IFT}) on \mathbb{U} is a family of \mathcal{IFSs} in \mathbb{U} , satisfying the following axioms. 1. $\tilde{0}, \tilde{1} \in \tau_{if}$

2. $\mathbb{G}_{if} \cap \mathbb{H}_{if} \in \tau_{if}$ for any \mathbb{G}_{if} , $\mathbb{H}_{if} \in \tau_{if}$

3. $\bigcup \mathbb{G}_{if_i} \in \tau_{if}$ for any family $\{\mathbb{G}_{if_i} / i \in \mathcal{J}\} \subseteq \tau_{if}$.

The pair $(\mathbb{U}, \tau_{i\bar{f}})$ is called an intuitionistic fuzzy topological space (\mathcal{IFTS}) and any \mathcal{IFS} in $\tau_{i\bar{f}}$ is known as an intuitionistic fuzzy open set (\mathcal{IFOS}) in X. The complement $(\mathbb{G}_{i\bar{f}}^{C})$ of an $\mathcal{IFOS} \mathbb{G}_{i\bar{f}}$ in an $\mathcal{IFTS}(\mathbb{U}, \tau_{i\bar{f}})$ is called an intuitionistic fuzzy closed set (\mathcal{IFCS}) in U. In this paper, Intuitionistic fuzzy interior is denoted by $int_{i\bar{f}}$ and Intuitionistic fuzzy closure is denoted by $cl_{i\bar{f}}$.

Definition 2.4. [3] Let (\mathbb{U}, τ_{if}) be an \mathcal{IFTS} and $\mathbb{G}_{if} = \{ \Box u \Box \mu_{\mathbb{G}_{if}}(u), \upsilon_{\mathbb{G}_{if}}(u) \Box : u \Box U \}$ be an \mathcal{IFS} in X. Then the interior and closure of the above \mathcal{IFS} are defined as follows:

- (i) $int_{if}(\mathbb{G}_{if}) = \bigcup \{\mathcal{H}_{if} \mid \mathcal{H}_{if} \text{ is an } \mathcal{IFOS} \text{ in } \mathbb{X} \text{ and } \mathcal{H}_{if} \subseteq \mathbb{G}_{if} \}$
- (ii) $cl_{i\mathfrak{f}}(\mathbb{G}_{\mathfrak{i}\mathfrak{f}}) = \cap \{\mathcal{K}_{\mathfrak{i}\mathfrak{f}} \mid \mathcal{K}_{\mathfrak{i}\mathfrak{f}} \text{ is an } \mathcal{IFCS} \text{ in } \mathbb{X} \text{ and } \mathbb{G}_{\mathfrak{i}\mathfrak{f}} \subseteq \mathcal{K}_{\mathfrak{i}\mathfrak{f}} \}$
- (iii) $cl_{if}(\mathbb{G}_{if}^{c}) = (int_{if}(\mathbb{G}_{if}))^{c}$
- (iv) $int_{if}(\mathbb{G}_{if}^{c}) = (cl_{if}(\mathbb{G}_{if}))^{c}$

Definition 2.5. [5] An *IFS* \mathbb{G}_{if} of an *IFTS* (\mathbb{U} , τ_{if}) is called an *IF* \hat{g}^*sCS , if $scl_{if}(\mathbb{G}_{if}) \subseteq \mathcal{O}_{if}$ whenever $\mathbb{G}_{if} \subseteq \mathcal{O}_{if}$ and \mathcal{O}_{if} is any *IF* $\hat{g}\mathcal{O}$ in (\mathbb{U} , τ_{if}).

Definition 2.4. [5] Let (\mathbb{U}, τ_{if}) be an \mathcal{IFTS} and $\mathbb{G}_{if} = \{ \Box u, \mu_{\mathbb{G}_{if}}(u), \upsilon_{\mathbb{G}_{if}}(u) \Box : u \Box U \}$ be an \mathcal{IFS} in U. Then

- (i) $\widehat{g}^*sint_{if}(\mathbb{G}_{if}) = \bigcup \{\mathcal{H}_{if} \mid \mathcal{H}_{if} \text{ is an } \mathcal{IF}\widehat{g}^*sOS \text{ in } \mathbb{U} \text{ and } \mathcal{H}_{if} \subseteq \mathbb{G}_{if} \},$
- (ii) $\widehat{g}^*scl_{if}(\mathbb{G}_{if}) = \bigcap \{ \mathcal{K}_{if} \mid \mathcal{K}_{if} \text{ is an } \mathcal{IF}\widehat{g}^*s\mathcal{CS} \text{ in } \mathbb{U} \text{ and } \mathbb{G}_{if} \subseteq \mathcal{K}_{if} \}$
- (iii) $\widehat{g}^*scl_{if}(\mathbb{G}_{if}^c) = (\widehat{g}^*sint_{if}(\mathbb{G}_{if}))^c$
- (iv) $\widehat{g}^*sint_{if}(\mathbb{G}_{if}^c) = (\widehat{g}^*scl_{if}(\mathbb{G}_{if}))^c$

Definition 2.5. [5] An $\mathcal{IFTS}(\mathbb{U}, \tau_{if})$ is called an $\mathcal{IF}\widehat{g}^*$ semi $T^*_{1/2}$ space ($\mathcal{IF}\widehat{g}^* \otimes T^*_{1/2}$ space) if every $\mathcal{IF}\widehat{g}^* \otimes \mathcal{CS}$ is \mathcal{IFCS} in (\mathbb{U}, τ_{if}) .

Definition 2.6.[6] A mapping $f: (\mathbb{U}, \tau_{i\dagger}) \to (\mathbb{V}, \sigma_{i\dagger})$ is called an $\mathcal{IF}\widehat{\mathcal{G}}^*s$ -continuous if $f^{-1}(\mathbb{G}_{i\dagger})$ is an $\mathcal{IF}\widehat{\mathcal{G}}^*s\mathcal{C}$ set in $(\mathbb{U}, \tau_{i\dagger})$ for every \mathcal{IFC} set $\mathbb{G}_{i\dagger}$ of $(\mathbb{V}, \sigma_{i\dagger})$.

Definition 2.7. [6] A mapping $f: (\mathbb{U}, \tau_{i\mathfrak{f}}) \to (\mathbb{V}, \sigma_{i\mathfrak{f}})$ is called an $\mathcal{IF}\widehat{\mathcal{G}}^*s$ -irresolute if $f^{-1}(\mathbb{G}_{i\mathfrak{f}})$ is an $\mathcal{IF}\widehat{\mathcal{G}}^*s\mathcal{C}$ set in $(\mathbb{U}, \tau_{i\mathfrak{f}})$ for every $\mathcal{IF}\widehat{\mathcal{G}}^*s\mathcal{C}$ set $\mathbb{G}_{i\mathfrak{f}}$ of $(\mathbb{V}, \sigma_{i\mathfrak{f}})$.

Definition 2.8. [7] Two \mathcal{IFSs} \mathbb{G}_{if} and \mathbb{H}_{if} are said to be *q*-coincident ($\mathbb{G}_{if q} \mathbb{H}_{if}$ in short) iff there exists an element $\mathfrak{u} \square \mathbb{U}$ such that $\mu_{\mathbb{G}_{if}}(\mathfrak{u}) > \mathfrak{v}_{\mathbb{H}_{if}}(\mathfrak{u})$ or $\mathfrak{v}_{\mathbb{G}_{if}}(\mathfrak{u}) < \mu_{\mathbb{H}_{if}}(\mathfrak{u})$.

Definition 2.9. [7] Two \mathcal{IFSs} \mathbb{G}_{if} and \mathbb{H}_{if} are said to be *not* q-coincident ($\mathbb{G}_{if} \stackrel{c}{} \mathbb{H}_{if}$ in short) iff $\mathbb{G}_{if} \subseteq \mathbb{H}_{if}^{c}$.

Definition 2.10. [7] An \mathcal{IFTS} (\mathbb{U}, τ_{if}) is called *intuitionistic fuzzy* C_5 -connected(\mathcal{IFC}_5ConS) if the only \mathcal{IFS} s which are both \mathcal{IFO} and \mathcal{IFC} are $\tilde{\mathbf{0}}$ and $\tilde{\mathbf{1}}$.

III. INTUITIONISTIC FUZZY \hat{g}^* SEMI CONNECTED SPACES

Definition 3.1. An *IFTS* (\mathbb{U}, τ_{ij}) is called *IF* \hat{g}^* Semi Connected Space(*JF* \hat{g}^*sConS) if the only *JFS*s which are both *JF* \hat{g}^*sCS and *JF* \hat{g}^*sOS are $\tilde{\mathbf{0}}$ and $\tilde{\mathbf{1}}$.

Theorem 3.2. Every $\mathcal{IF}\widehat{g}^*sConS$ is $\mathcal{IF}C_5ConS$ but not conversely.

Proof: Let (\mathbb{U}, τ_{if}) is called \mathcal{JFG}^*sConS . Let us presume (\mathbb{U}, τ_{if}) is not an \mathcal{JFC}_5ConS , then there exists an \mathcal{JFS} \mathbb{G}_{if} that is both \mathcal{JFCS} and \mathcal{JFOS} in (\mathbb{U}, τ_{if}) . That is, \mathbb{G}_{if} is both \mathcal{JFG}^*sCS and \mathcal{JFG}^*sOS in (\mathbb{U}, τ_{if}) . This implies that (\mathbb{U}, τ_{if}) is not an \mathcal{JFG}^*sConS . This contradicts our assumption. Therefore (\mathbb{U}, τ_{if}) must be an \mathcal{JFC}_5ConS .

Example 3.3. Let $\mathbb{U} = \{e, f\}, \tau_{if} = \{\tilde{0}, \mathbb{G}_{if}, \tilde{1}\}$ where $\mathbb{G}_{if} = \{\langle e, 0.3, 0.7 \rangle, \langle f, 0.4, 0.6 \rangle\}$. Then (\mathbb{U}, τ_{if}) is \mathcal{IFC}_5ConS , but not $\mathcal{IF}\widehat{g}^*sConS$, because the $\mathcal{IFS} \mathbb{N}_{if} = \{\langle e, 0.4, 0.6 \rangle, \langle f, 0.5, 0.5 \rangle\}$ in (\mathbb{U}, τ_{if}) is both $\mathcal{IF}\widehat{g}^*sCS$ and $\mathcal{IF}\widehat{g}^*sOS$.

Theorem 3.4. An $\mathcal{IFTS}(\mathbb{U},\tau_{if})$ is an \mathcal{IFG}^*sConS iff there exist no non-zero \mathcal{IFG}^*sOSs \mathbb{G}_{if} and \mathbb{H}_{if} in (\mathbb{U},τ_{if}) such that $\mathbb{H}_{if} = \mathbb{G}_{if}^{c}$, $\mathbb{H}_{if} = (scl_{if}(\mathbb{G}_{if}))^{c}$ and $\mathbb{G}_{if} = (scl_{if}(\mathbb{H}_{if}))^{c}$.

Proof: *Necessity:* Let (\mathbb{U},τ_{if}) be an $\mathcal{IF}\widehat{g}^*sConS$ We assume two $\mathcal{IFSs} \ \mathbb{G}_{if}$ and \mathbb{H}_{if} such that $\mathbb{G}_{if} \neq \widetilde{0} \neq \mathbb{H}_{if}$, $\mathbb{H}_{if} = \mathbb{G}_{if}^c$, $\mathbb{H}_{if} = (scl_{if}(\mathbb{G}_{if}))^c$ and $\mathbb{G}_{if} = (scl_{if}(\mathbb{H}_{if}))^c$. Since $(scl_{if}(\mathbb{G}_{if}))^c$ and $(scl_{if}(\mathbb{H}_{if}))^c$ are $\mathcal{IF}\widehat{g}^*sOSs$ in (\mathbb{U},τ_{if}) , \mathbb{G}_{if} and \mathbb{H}_{if} are $\mathcal{IF}\widehat{g}^*sOSs$ in (\mathbb{U},τ_{if}) . This implies (\mathbb{U},τ_{if}) is not an $\mathcal{IF}\widehat{g}^*sConS$, which contradicts our assumption. Therefore there exist no non-zero $\mathcal{IF}\widehat{g}^*sOSs \ \mathbb{G}_{if}$ and \mathbb{H}_{if} in (\mathbb{U},τ_{if}) such that $\mathbb{H}_{if} = \mathbb{G}_{if}^c$, $\mathbb{H}_{if} = (scl_{if}(\mathbb{G}_{if}))^c$ and $\mathbb{G}_{if} = (scl_{if}(\mathbb{H}_{if}))^c$.

Sufficiency: Let \mathbb{G}_{if} be both $\mathcal{IF}\widehat{g}^*sOS$ and $\mathcal{IF}\widehat{g}^*sCS$ in (\mathbb{U},τ_{if}) such that $\widetilde{1} \neq \mathbb{G}_{if} \neq \widetilde{0}$. Now by taking $\mathbb{H}_{if} = \mathbb{G}_{if}^{c}$, we obtain a contradiction to our hypothesis. Hence (\mathbb{U},τ_{if}) is an $\mathcal{IF}\widehat{g}^*sConS$.

Theorem 3.5. Let $(\mathbb{U}, \tau_{i\mathfrak{f}})$ be an $\mathcal{IF}\mathcal{G}^*sT^*_{1/2}$ space, then the following statements are equivalent: (a) $(\mathbb{U}, \tau_{i\mathfrak{f}})$ is an $\mathcal{IF}\mathcal{G}^*sConS$, (b) $(\mathbb{U}, \tau_{i\mathfrak{f}})$ is an \mathcal{IFC}_5ConS .

Proof: (a) \Rightarrow (b) is evident from Theorem 3.1.

(**b**) \Rightarrow (**a**) Let (\mathbb{U}, τ_{if}) be an \mathcal{IFC}_5ConS . Suppose (\mathbb{U}, τ_{if}) is not $\mathcal{IF}\widehat{\mathcal{G}}^*\mathcal{S}ConS$, then there is an existence of a proper \mathcal{IFS} \mathbb{G}_{if} in (\mathbb{U}, τ_{if}) which is both $\mathcal{IF}\widehat{\mathcal{G}}^*\mathcal{SCS}$ and $\mathcal{IF}\widehat{\mathcal{G}}^*\mathcal{SOS}$. But since (\mathbb{U}, τ_{if}) is an $\mathcal{IF}\widehat{\mathcal{G}}^*\mathcal{S}$ $T^*_{1/2}$ space, \mathbb{G}_{if} in (\mathbb{U}, τ_{if}) is both \mathcal{IFCS} and \mathcal{IFOS} . This implies that (\mathbb{U}, τ_{if}) is not \mathcal{IFC}_5ConS . This contradicts our assumption. Therefore (\mathbb{U}, τ_{if}) must be an $\mathcal{IF}\widehat{\mathcal{G}}^*\mathcal{SConS}$.

Theorem 3.6. If $f: (\mathbb{U}, \tau_{ij}) \to (\mathbb{V}, \sigma_{ij})$ is an $\mathcal{IF}\widehat{g}^*s$ -continuous surjective mapping and (\mathbb{U}, τ_{ij}) is an $\mathcal{IF}\widehat{g}^*sConS$, then $(\mathbb{V}, \sigma_{ij})$ is an $\mathcal{IF}C_5ConS$.

Proof: Let $(\mathbb{U}, \tau_{i\mathfrak{f}})$ be an $\mathcal{IF}\widehat{g}^*sConS$. Suppose $(\mathbb{V}, \sigma_{i\mathfrak{f}})$ is not $\mathcal{IF}C_5ConS$, then there is an existence of a proper \mathcal{IFS} $\mathbb{G}_{i\mathfrak{f}}$ in $(\mathbb{V}, \sigma_{i\mathfrak{f}})$ which is both \mathcal{IFCS} and \mathcal{IFOS} . Since f is an $\mathcal{IF}\widehat{g}^*s$ -continuous surjective mapping, $f^{-1}(\mathbb{G}_{i\mathfrak{f}})$ is both $\mathcal{IF}\widehat{g}^*sCS$ and $\mathcal{IF}\widehat{g}^*sOS$ in $(\mathbb{U}, \tau_{i\mathfrak{f}})$. This contradicts our assumption. Hence $(\mathbb{V}, \sigma_{i\mathfrak{f}})$ must be an \mathcal{IFC}_5ConS .

Theorem 3.7. If $f:(\mathbb{U},\tau_{i\mathfrak{f}}) \to (\mathbb{V},\sigma_{i\mathfrak{f}})$ is an $\mathcal{IF}\widehat{g}^*s$ -irresolute surjective mapping and $(\mathbb{U},\tau_{i\mathfrak{f}})$ is an $\mathcal{IF}\widehat{g}^*sConS$, then $(\mathbb{V},\sigma_{i\mathfrak{f}})$ is an $\mathcal{IF}\widehat{g}^*sConS$.

Proof: Let $(\mathbb{U}, \tau_{i\mathfrak{f}})$ be an $\mathcal{IF}\widehat{g}^*sConS$. Suppose $(\mathbb{V}, \sigma_{i\mathfrak{f}})$ is not an $\mathcal{IF}\widehat{g}^*sConS$, then there is an existence of a proper \mathcal{IFS} $\mathbb{G}_{i\mathfrak{f}}$ in $(\mathbb{V}, \sigma_{i\mathfrak{f}})$ which is both $\mathcal{IF}\widehat{g}^*sCS$ and $\mathcal{IF}\widehat{g}^*sOS$. Since f is an $\mathcal{IF}\widehat{g}^*s$ – irresolute surjective mapping, $f^{-1}(\mathbb{G}_{i\mathfrak{f}})$ is both $\mathcal{IF}\widehat{g}^*sCS$ and $\mathcal{IF}\widehat{g}^*sOS$. Since f is an $\mathcal{IF}\widehat{g}^*s$ – irresolute surjective mapping, $f^{-1}(\mathbb{G}_{i\mathfrak{f}})$ is both $\mathcal{IF}\widehat{g}^*sCS$ and $\mathcal{IF}\widehat{g}^*sCS$. This contradicts our assumption. Hence $(\mathbb{V}, \sigma_{i\mathfrak{f}})$ must be an $\mathcal{IF}\widehat{g}^*sConS$.

Theorem 3.9. If an $\mathcal{IFTS}(\mathbb{U},\tau_{if})$ is \mathcal{IFG}^*sCon between two $\mathcal{IFSs} \mathbb{G}_{if}$ and \mathbb{H}_{if} , then it is \mathcal{IFC}_5Con between \mathbb{G}_{if} and \mathbb{H}_{if} but the converse need not be true.

Proof: Suppose (\mathbb{U}, τ_{if}) is not \mathcal{IFC}_5Con between \mathbb{G}_{if} and \mathbb{H}_{if} , then there exists and \mathcal{IFOS} \mathbb{I}_{if} in (\mathbb{U}, τ_{if}) such that $\mathbb{G}_{if} \subseteq \mathbb{I}_{if}$ and $\mathbb{I}_{if} \stackrel{c}{}_{q} \stackrel{c}{}_{hf}$. Since every \mathcal{IFOS} is an \mathcal{IFG}^*sOS , there exists an \mathcal{IFG}^*sOS \mathbb{I}_{if} such that $\mathbb{G}_{if} \subseteq \mathbb{I}_{if}$ and $\mathbb{I}_{if} \stackrel{c}{}_{q} \stackrel{c}{}_{hf}$. This implies (\mathbb{U}, τ_{if}) is not \mathcal{IFG}^*sCon between \mathbb{G}_{if} and \mathbb{H}_{if} , which contradicts the assumption. Therefore (\mathbb{U}, τ_{if}) must be \mathcal{IFC}_5Con between \mathbb{G}_{if} and \mathbb{H}_{if} .

Example 3.10. Let $\mathbb{U} = \{e, f\}, \tau_{if} = \{\tilde{0}, \mathbb{G}_{if}, \tilde{1}\}$ where $\mathbb{G}_{if} = \{<e, 0.5, 0.5>, <f, 0.4, 0.6>\}$. Let $\mathbb{A}_{if} = \{<e, 0.52, 0.48>, <f, 0.43, 0.57>\}$ and $\mathbb{B}_{if} = \{<e, 0.6, 0.4>, <f, 0.7, 0.3>\}$ be two \mathcal{IFS} s in \mathbb{U} . Then (\mathbb{U}, τ_{if}) is \mathcal{IFC}_5Con between \mathbb{A}_{if} and \mathbb{B}_{if} , since there exists no \mathcal{IFOS} \mathbb{E}_{if} in \mathbb{U} such that $\mathbb{A}_{if} \subseteq \mathbb{E}_{if}$ and $\mathbb{E}_{if q} \mathbb{B}_{if}$. But it is not \mathcal{IFG}^*sCon between \mathbb{A}_{if} and \mathbb{B}_{if} , since there exists an $\mathcal{IFG}^*sCOS \mathbb{E}_{if} = \{<e, 0.7, 0.3>, <f, 0.8, 0.2>\}$ such that $\mathbb{A}_{if} \subseteq \mathbb{E}_{if}$ and $\mathbb{E}_{if q} \mathbb{B}_{if}$.

Theorem 3.11. If an $\mathcal{IFTS}(\mathbb{U},\tau_{if})$ is \mathcal{IFG}^*sCon between two \mathcal{IFSs} \mathbb{G}_{if} and \mathbb{H}_{if} and $\mathbb{G}_{if} \subseteq \mathcal{M}_{if}$, $\mathbb{H}_{if} \subseteq \mathcal{N}_{if}$, then (\mathbb{U},τ_{if}) is \mathcal{IFG}^*sCon between \mathcal{M}_{if} and \mathcal{N}_{if} .

Proof: Suppose that (\mathbb{U}, τ_{if}) is not $\mathcal{IF}\widehat{g}^*sCon$ between \mathcal{M}_{if} and \mathcal{N}_{if} , then by Def. 3.2., there exists an $\mathcal{IF}\widehat{g}^*sOS \ \mathbb{I}_{if}$ in (\mathbb{U}, τ_{if}) such that $\mathcal{M}_{if} \subseteq \mathbb{I}_{if}$ and $\mathbb{I}_{if} \,_{q}^{c} \mathcal{N}_{if}$. This implies $\mathbb{I}_{if} \subseteq \mathcal{N}_{if}^{c}$.

 $\mathcal{M}_{i\mathfrak{f}} \subseteq \mathbb{I}_{i\mathfrak{f}} \text{ implies } \mathbb{G}_{i\mathfrak{f}} \subseteq \mathcal{M}_{i\mathfrak{f}} \subseteq \mathbb{I}_{i\mathfrak{f}}. \text{ That is } \mathbb{G}_{i\mathfrak{f}} \subseteq \mathbb{I}_{i\mathfrak{f}}.$

Now let us prove that $\mathbb{I}_{if} \subseteq \mathbb{H}_{if}^{c}$, that is $\mathbb{I}_{if q}^{c} \mathbb{H}_{if}$. Suppose $\mathbb{I}_{if q} \mathbb{H}_{if}$, then by Def. 2.8., there exists an element $\mathbb{U} \subseteq \mathbb{U}$ such that $\mu_{\mathbb{I}_{if}}(\mathbb{U}) > \upsilon_{\mathbb{H}_{if}}(\mathbb{U}) = \upsilon_{\mathbb{I}_{if}}(\mathbb{U})$ or $\upsilon_{\mathbb{I}_{if}} < \mu_{\mathbb{H}_{if}}(\mathbb{U})$. Therefore $\mu_{\mathbb{I}_{if}}(\mathbb{U}) > \upsilon_{\mathcal{N}_{if}}(\mathbb{U})$ and $\upsilon_{\mathbb{I}_{if}} < \mu_{\mathbb{H}_{if}}(\mathbb{U})$, since $\mathbb{H}_{if} \subseteq \mathcal{M}_{if}$. Hence $\mu_{\mathbb{I}_{if}}(\mathbb{U}) > \upsilon_{\mathcal{N}_{if}}(\mathbb{U})$ and $\upsilon_{\mathbb{I}_{if}} < \mu_{\mathcal{N}_{if}}(\mathbb{U})$. Thus $\mathbb{I}_{if q} \mathcal{N}_{if}$, which is a contradiction. Therefore $\mathbb{I}_{if q}^{c} \mathbb{H}_{if}$. Hence (\mathbb{U}, τ_{if}) is not $\mathcal{IF}\mathcal{G}^*sCon$ between two $\mathcal{IFS}s \mathbb{G}_{if}$ and \mathbb{H}_{if} , which is a contradiction to our hypothesis. Thus (\mathbb{U}, τ_{if}) must be $\mathcal{IF}\mathcal{G}^*sCon$ between \mathcal{M}_{if} and \mathcal{N}_{if} .

Theorem 3.12. Let $(\mathbb{U}, \tau_{i\mathfrak{f}})$ be an \mathcal{IFTS} and $\mathbb{G}_{i\mathfrak{f}}$ and $\mathbb{H}_{i\mathfrak{f}}$ be \mathcal{IFSs} in $(\mathbb{U}, \tau_{i\mathfrak{f}})$. If $\mathbb{G}_{i\mathfrak{f} q} \mathbb{H}_{i\mathfrak{f}}$, then $(\mathbb{U}, \tau_{i\mathfrak{f}})$ is $\mathcal{IF}\widehat{\mathcal{G}}^*sCon$ between $\mathbb{G}_{i\mathfrak{f}}$ and $\mathbb{H}_{i\mathfrak{f}}$.

Proof: Suppose $(\mathbb{U}, \tau_{i\mathfrak{f}})$ is not $\mathcal{IF}\widehat{\mathcal{G}}^*sCon$ between $\mathbb{G}_{\mathfrak{i}\mathfrak{f}}$ and $\mathbb{H}_{\mathfrak{i}\mathfrak{f}}$. Then there exists an $\mathcal{IF}\widehat{\mathcal{G}}^*sOS$ $\mathbb{I}_{\mathfrak{i}\mathfrak{f}}$ in $(\mathbb{U}, \tau_{\mathfrak{i}\mathfrak{f}})$ such that $\mathbb{G}_{\mathfrak{i}\mathfrak{f}} \subseteq \mathbb{I}_{\mathfrak{i}\mathfrak{f}}$ and $\mathbb{I}_{\mathfrak{i}\mathfrak{f}} \stackrel{q^c}{=} \mathbb{H}_{\mathfrak{i}\mathfrak{f}} \stackrel{q^c}{=} \mathbb{H}_{\mathfrak{i}\mathfrak{f}} \stackrel{q^c}{=} \mathbb{H}_{\mathfrak{i}\mathfrak{f}} \stackrel{q^c}{=} \mathbb{H}_{\mathfrak{i}\mathfrak{f}} \stackrel{q^c}{=} \mathbb{H}_{\mathfrak{i}\mathfrak{f}}$. This implies $\mathbb{G}_{\mathfrak{i}\mathfrak{f}} \subseteq \mathbb{H}_{\mathfrak{i}\mathfrak{f}}^c$. That is $\mathbb{G}_{\mathfrak{i}\mathfrak{f}} \stackrel{q^c}{=} \mathbb{H}_{\mathfrak{i}\mathfrak{f}}$. This contradicts our hypothesis. Therefore $(\mathbb{U}, \tau_{\mathfrak{i}\mathfrak{f}})$ must be $\mathcal{IF}\widehat{\mathcal{G}}^*sCon$ between $\mathbb{G}_{\mathfrak{i}\mathfrak{f}}$ and $\mathbb{H}_{\mathfrak{i}\mathfrak{f}}$.

Definition 3.13. An $\mathcal{IF}\widehat{g}^*sOS$ \mathbb{G}_{if} is an \mathcal{IF} regular \widehat{g}^* semi-open set $(\mathcal{IFR}\widehat{g}^*sOS)$ if $\mathbb{G}_{if} = \widehat{g}^*sint_{if}(\widehat{g}^*scl_{if}(\mathbb{G}_{if}))$. The complement of an $\mathcal{IFR}\widehat{g}^*sOS$ is an $\mathcal{IFR}\widehat{g}^*sCS$.

Definition 3.14. An *JFTS* (\mathbb{U}, τ_{if}) is called an intuitionistic fuzzy \hat{g}^* semi super connected (*JF\hat{g}^*sSConS*) if there exists no proper *JFR\hat{g}^*sOS* in (\mathbb{U}, τ_{if}).

Theorem 3.15. Let (\mathbb{U}, τ_{if}) be an *IFTS*. Then the following statements are equivalent:

- (a) (\mathbb{U}, τ_{if}) is an $\mathcal{IF}\widehat{g}^*sSConS$.
- (b) For every non-zero $\mathcal{IF}\widehat{g}^*sOS \ \mathbb{G}_{i\mathfrak{f}}, \widehat{g}^*scl_{i\mathfrak{f}}(\mathbb{G}_{i\mathfrak{f}}) = \widetilde{\mathbf{1}}.$
- (c) For every $\mathcal{IF}\widehat{g}^*s\mathcal{CS} \mathbb{G}_{i\mathfrak{f}}$ with $\mathbb{G}_{i\mathfrak{f}} \neq \tilde{1}, \widehat{g}^*sint(\mathbb{G}_{i\mathfrak{f}}) = \tilde{0}$.
- (d) There exist no \mathbb{G}_{if} and \mathbb{H}_{if} in (\mathbb{U}, τ_{if}) such that $\mathbb{G}_{if} \neq \tilde{\mathbf{0}} \neq \mathbb{H}_{if}, \mathbb{G}_{if} \subseteq \mathbb{H}_{if}^{c}$.
- (e) There exist no \mathbb{G}_{if} and \mathbb{H}_{if} in (\mathbb{U}, τ_{if}) such that $\mathbb{G}_{if} \neq \tilde{\mathbf{0}} \neq \mathbb{H}_{if}$, $\mathbb{H}_{if} = (\hat{g}^* scl_{if}(\mathbb{G}_{if}))^c$, $\mathbb{G}_{if} = (\hat{g}^* scl_{if}(\mathbb{H}_{if}))^c$.
- (f) There exist no \mathbb{G}_{if} and \mathbb{H}_{if} in (\mathbb{U}, τ_{if}) such that $\mathbb{G}_{if} \neq \tilde{\mathbf{0}} \neq \mathbb{H}_{if}$, $\mathbb{H}_{if} = (\widehat{g}^* sint_{if}(\mathbb{G}_{if}))^c$, $\mathbb{G}_{if} = (\widehat{g}^* sint_{if}(\mathbb{H}_{if}))^c$.

Proof: (a) \Rightarrow (b) Assume that there exists an $\mathcal{IF}\widehat{g}^*sOS \ \mathbb{G}_{i\mathfrak{f}}$ in $(\mathbb{U},\tau_{i\mathfrak{f}})$ such that $\mathbb{G}_{i\mathfrak{f}} \neq \tilde{\mathbf{0}}$ and $\widehat{g}^*scl_{i\mathfrak{f}}(\mathbb{G}_{i\mathfrak{f}}) \neq \tilde{\mathbf{1}}$. Now let $\mathbb{H}_{i\mathfrak{f}} = \widehat{g}^*sint_{i\mathfrak{f}}(\widehat{g}^*scl_{i\mathfrak{f}}(\mathbb{G}_{i\mathfrak{f}}))^c$. Then $\mathbb{H}_{i\mathfrak{f}}$ is a proper $\mathcal{IFR}\widehat{g}^*sOS$ in $(\mathbb{U},\tau_{i\mathfrak{f}})$, which contradicts the assumption. Therefore $\widehat{g}^*scl_{i\mathfrak{f}}(\mathbb{G}_{i\mathfrak{f}}) = \tilde{\mathbf{1}}$.

(**b**) \Rightarrow (**c**) Let $\mathbb{G}_{i\mathfrak{f}} \neq \tilde{\mathbf{1}}$ be an $\mathcal{IF}\widehat{\mathcal{G}}^*\mathcal{SCS}$ in $(\mathbb{U},\tau_{i\mathfrak{f}})$. If $\mathbb{H}_{i\mathfrak{f}} = \mathbb{G}_{i\mathfrak{f}}^c$, then $\mathbb{H}_{i\mathfrak{f}}$ is an $\mathcal{IF}\widehat{\mathcal{G}}^*\mathcal{SOS}$ in $(\mathbb{U},\tau_{i\mathfrak{f}})$ with $\mathbb{H}_{i\mathfrak{f}} \neq \tilde{\mathbf{0}}$. Hence $\widehat{\mathcal{G}}^*\mathcal{Scl}_{i\mathfrak{f}}(\mathbb{H}_{i\mathfrak{f}}) = \tilde{\mathbf{1}}$. This implies $(\widehat{\mathcal{G}}^*\mathcal{Scl}_{i\mathfrak{f}}(\mathbb{H}_{i\mathfrak{f}}))^c = \tilde{\mathbf{0}}$. That is $\widehat{\mathcal{G}}^*\mathfrak{Sint}_{i\mathfrak{f}}(\mathbb{H}_{i\mathfrak{f}}^c) = \tilde{\mathbf{0}}$. Hence $\widehat{\mathcal{G}}^*\mathfrak{Sint}(\mathbb{G}_{i\mathfrak{f}}) = \tilde{\mathbf{0}}$.

(c) \Rightarrow (d) Suppose $\mathbb{G}_{i\mathfrak{f}}$ and $\mathbb{H}_{i\mathfrak{f}}$ be two $\mathcal{IF}\widehat{g}^*s\mathcal{OS}s$ in $(\mathbb{U},\tau_{i\mathfrak{f}})$ such that $\mathbb{G}_{i\mathfrak{f}} \neq \widetilde{\mathbf{0}} \neq \mathbb{H}_{i\mathfrak{f}}$ and $\mathbb{G}_{i\mathfrak{f}} \subseteq \mathbb{H}_{i\mathfrak{f}}^{c}$. Then $\mathbb{H}_{i\mathfrak{f}}^{c}$ is an $\mathcal{IF}\widehat{g}^*s\mathcal{OS}s$ in $(\mathbb{U},\tau_{i\mathfrak{f}})$ and $\mathbb{H}_{i\mathfrak{f}} \neq \widetilde{\mathbf{0}}$ implies $\mathbb{H}_{i\mathfrak{f}}^{c} \neq \widetilde{\mathbf{1}}$. By hypothesis $\widehat{g}^*sint_{i\mathfrak{f}}(\mathbb{H}_{i\mathfrak{f}}^{c}) = \widetilde{\mathbf{0}}$. But $\mathbb{G}_{i\mathfrak{f}} \subseteq \mathbb{H}_{i\mathfrak{f}}^{c}$. Therefore $\widetilde{\mathbf{0}} \neq \mathbb{G}_{i\mathfrak{f}} = \widehat{g}^*sint(\mathbb{G}_{i\mathfrak{f}}) \subseteq \widehat{g}^*sint(\mathbb{H}_{i\mathfrak{f}}^{c}) = \widetilde{\mathbf{0}}$, which is a contradiction. Therefore (d) is true.

 $\begin{aligned} &(\mathbf{d}) \Rightarrow (\mathbf{a}) \text{ Suppose } \tilde{\mathbf{0}} \neq \mathbb{G}_{i\mathfrak{f}} \neq \tilde{\mathbf{1}} \text{ be an } \mathcal{IFR}\widehat{\mathcal{G}}^*s\mathcal{OS} \text{ in } (\mathbb{U},\tau_{i\mathfrak{f}}). \text{ If we take } \mathbb{H}_{i\mathfrak{f}} = (\widehat{\mathcal{G}}^*scl_{i\mathfrak{f}}(\mathbb{G}_{i\mathfrak{f}}))^c, \\ &\text{Then } \mathbb{H}_{i\mathfrak{f}} \text{ is an } \mathcal{IFR}\widehat{\mathcal{G}}^*s\mathcal{OS}, \text{ since } \widehat{\mathcal{G}}^*sint_{i\mathfrak{f}}(\widehat{\mathcal{G}}^*scl_{i\mathfrak{f}}(\mathbb{H}_{i\mathfrak{f}})) = \widehat{\mathcal{G}}^*sint_{i\mathfrak{f}}(\widehat{\mathcal{G}}^*scl_{i\mathfrak{f}}(\mathbb{G}_{i\mathfrak{f}}))^c) \\ &= \widehat{\mathcal{G}}^*sint_{i\mathfrak{f}}(\widehat{\mathcal{G}}^*scl_{i\mathfrak{f}}(\mathbb{G}_{i\mathfrak{f}}))^c = \widehat{\mathcal{G}}^*sint_{i\mathfrak{f}}(\mathbb{G}_{i\mathfrak{f}}^{c}) = (\widehat{\mathcal{G}}^*scl_{i\mathfrak{f}}(\mathbb{G}_{i\mathfrak{f}}))^c = \mathbb{H}_{i\mathfrak{f}}. \text{ Also we get } \mathbb{H}_{i\mathfrak{f}} \neq \tilde{\mathbf{0}}, \text{ since otherwise if } \\ &\mathbb{H}_{i\mathfrak{f}} = \tilde{\mathbf{0}} \text{ then this implies } (\widehat{\mathcal{G}}^*scl_{i\mathfrak{f}}(\mathbb{G}_{i\mathfrak{f}}))^c = \tilde{\mathbf{0}}. \text{ That is } \widehat{\mathcal{G}}^*scl_{i\mathfrak{f}}(\mathbb{G}_{i\mathfrak{f}}) = \tilde{\mathbf{1}}. \text{ Hence } \mathbb{G}_{i\mathfrak{f}} = \widehat{\mathcal{G}}^*sint_{i\mathfrak{f}}(\widehat{\mathcal{G}}^*scl_{i\mathfrak{f}}(\mathbb{G}_{i\mathfrak{f}})) = \widehat{\mathcal{G}}^*sint_{i\mathfrak{f}}(\tilde{\mathbf{1}}) \\ &= \tilde{\mathbf{1}}, \text{ which is a contradiction. Therefore } \mathbb{H}_{i\mathfrak{f}} \neq \tilde{\mathbf{0}} \text{ and } \mathbb{G}_{i\mathfrak{f}} \subseteq \mathbb{H}_{i\mathfrak{f}}^c. \text{ But this is a contradiction to (d). Therefore } (\mathbb{U},\tau_{i\mathfrak{f}}) \text{ must} \\ &\text{ be an } \mathcal{IF}\widehat{\mathcal{G}}^*s \text{ super connected space.} \end{aligned}$

(a) \Rightarrow (e) Suppose $\mathbb{G}_{i\mathfrak{f}}$ and $\mathbb{H}_{i\mathfrak{f}}$ be two $\mathcal{IF}\widehat{\mathcal{G}}^*s\mathcal{OS}s$ in $(\mathbb{U},\tau_{i\mathfrak{f}})$ such that $\mathbb{G}_{i\mathfrak{f}} \neq \tilde{\mathbf{0}} \neq \mathbb{H}_{i\mathfrak{f}}$ and $\mathbb{H}_{i\mathfrak{f}} = (\widehat{\mathcal{G}}^*scl_{i\mathfrak{f}}(\mathbb{G}_{i\mathfrak{f}}))^c$, $\mathbb{G}_{i\mathfrak{f}} = (\widehat{\mathcal{G}}^*scl_{i\mathfrak{f}}(\mathbb{H}_{i\mathfrak{f}}))^c$. Now we have $\widehat{\mathcal{G}}^*sint_{i\mathfrak{f}}(\widehat{\mathcal{G}}^*scl_{i\mathfrak{f}}(\mathbb{G}_{i\mathfrak{f}})) = \widehat{\mathcal{G}}^*sint(\mathbb{H}_{i\mathfrak{f}}^c) = (\widehat{\mathcal{G}}^*scl_{i\mathfrak{f}}(\mathbb{H}_{i\mathfrak{f}}))^c = \mathbb{G}_{i\mathfrak{f}}$, $\mathbb{G}_{i\mathfrak{f}} \neq \tilde{\mathbf{0}}$ and $\mathbb{G}_{i\mathfrak{f}} \neq \tilde{\mathbf{1}}$, since if $\mathbb{G}_{i\mathfrak{f}} = \tilde{\mathbf{1}}$, then $(\widehat{\mathcal{G}}^*scl_{i\mathfrak{f}}(\mathbb{H}_{i\mathfrak{f}}))^c \Rightarrow \widehat{\mathcal{G}}^*scl_{i\mathfrak{f}}(\mathbb{H}_{i\mathfrak{f}}) = \tilde{\mathbf{0}} \Rightarrow \mathbb{H}_{i\mathfrak{f}} = \tilde{\mathbf{0}}$. Therefore $\mathbb{G}_{i\mathfrak{f}} \neq \tilde{\mathbf{1}}$. That is $\mathbb{G}_{i\mathfrak{f}}$ is a proper $\mathcal{IFR}\widehat{\mathcal{G}}^*s\mathcal{OS}$ in $(\mathbb{U},\tau_{i\mathfrak{f}})$, which is a contradiction to (a). Hence (e) is true.

 $(\mathbf{e}) \Rightarrow (\mathbf{a}) \text{ Let } \mathbb{G}_{i\mathfrak{f}} \text{ be an } \mathcal{IF}\widehat{\mathcal{G}}^*s\mathcal{OS} \text{ in } (\mathbb{U},\tau_{i\mathfrak{f}}) \text{ such that } \widetilde{\mathbf{0}} \neq \mathbb{G}_{i\mathfrak{f}} \neq \widetilde{\mathbf{1}}. \text{ Now take } \mathbb{H}_{i\mathfrak{f}} = (\widehat{\mathcal{G}}^*scl_{i\mathfrak{f}}(\mathbb{G}_{i\mathfrak{f}}))^c. \text{ In this case we get } \mathbb{H}_{i\mathfrak{f}} = \widetilde{\mathbf{0}} \text{ and } \mathbb{H}_{i\mathfrak{f}} \text{ is an } \mathcal{IF}\widehat{\mathcal{G}}^*s\mathcal{OS} \text{ in } (\mathbb{U},\tau_{i\mathfrak{f}}). \text{ Now } \mathbb{H}_{i\mathfrak{f}} = (\widehat{\mathcal{G}}^*scl_{i\mathfrak{f}}(\mathbb{G}_{i\mathfrak{f}}))^c \text{ and } (\widehat{\mathcal{G}}^*scl_{i\mathfrak{f}}(\mathbb{H}_{i\mathfrak{f}}))^c = \widehat{\mathcal{G}}^*sint_{i\mathfrak{f}}(\widehat{\mathcal{G}}^*scl_{i\mathfrak{f}}(\mathbb{G}_{i\mathfrak{f}}))^c \cap \widehat{\mathcal{G}}^*sint_{i\mathfrak{f}}(\widehat{\mathcal{G}}^*scl_{i\mathfrak{f}}(\mathbb{G}_{i\mathfrak{f}})) = \mathbb{G}_{i\mathfrak{f}}. \text{ But this is a contradiction to (e). Therefore } (\mathbb{U},\tau_{i\mathfrak{f}}) \text{ must be an } \mathcal{IF}\widehat{\mathcal{G}}^*s \text{ super connected space. }$

(e) \Rightarrow (f) Suppose \mathbb{G}_{if} and \mathbb{H}_{if} be two $\mathcal{IF}\widehat{\mathcal{G}}^*s\mathcal{CS}s$ in (\mathbb{U},τ_{if}) such that $\mathbb{G}_{if} \neq \tilde{\mathbf{0}} \neq \mathbb{H}_{if}$, $\mathbb{H}_{if} = (\widehat{\mathcal{G}}^*sint_{if}(\mathbb{G}_{if}))^c$, $\mathbb{G}_{if} = (\widehat{\mathcal{G}}^*sint_{if}(\mathbb{H}_{if}))^c$. Taking $\mathbb{I}_{if} = \mathbb{G}_{if}^c$ and $\mathbb{J}_{if} = \mathbb{H}_{if}^c$, \mathbb{I}_{if} and \mathbb{J}_{if} become $\mathcal{IF}\widehat{\mathcal{G}}^*s\mathcal{OS}s$ in (\mathbb{U},τ_{if}) with $\mathbb{I}_{if} \neq \tilde{\mathbf{0}} \neq \mathbb{J}_{if}$ and $\mathbb{J}_{if} = (\widehat{\mathcal{G}}^*scl_{if}(\mathbb{I}_{if}))^c$, $\mathbb{I}_{if} = (\widehat{\mathcal{G}}^*scl_{if}(\mathbb{J}_{if}))^c$, which is a contradiction to (e). Hence (f) is true.

(f) \Rightarrow (e) can be proved easily by the similar way as in (e) \Rightarrow (f).

Definition 3.16. An *JFTS* (\mathbb{U}, τ_{if}) is called an intuitionistic fuzzy \hat{g}^* semi extremally disconnected (*JF\hat{g}^*EDconS*) if the \hat{g}^*s closure of every *JF\hat{g}^*sOS* in (\mathbb{U}, τ_{if}) is *JF\hat{g}^*sOS*.

Theorem 3.17. Let (\mathbb{U}, τ_{if}) be an *JFTS*. Then the following statements are equivalent:

(a) (\mathbb{U}, τ_{if}) is an $\mathcal{IF}\widehat{g}^*sEDconS$.

(b) For each $\mathcal{IF}\widehat{g}^*s\mathcal{CS} \ \mathbb{G}_{if}, \widehat{g}^*sint_{if}(\mathbb{G}_{if})$ is an $\mathcal{IF}\widehat{g}^*s\mathcal{CS}$

(c) For each $\mathcal{IF}\widehat{g}^*sOS \ \mathbb{G}_{i\mathfrak{f}}, \widehat{g}^*scl_{i\mathfrak{f}}(\mathbb{G}_{i\mathfrak{f}}) = (\widehat{g}^*scl_{i\mathfrak{f}}(\widehat{g}^*scl_{i\mathfrak{f}}(\mathbb{G}_{i\mathfrak{f}}))^c)^c$

(d) For each pair of $\mathcal{IF}\widehat{g}^*sOSs \mathbb{G}_{if}$ and \mathbb{H}_{if} with $\widehat{g}^*scl_{if}(\mathbb{G}_{if}) = \mathbb{H}_{if}^{c}$ implies that $\widehat{g}^*scl_{if}(\mathbb{G}_{if}) = (\widehat{g}^*scl_{if}(\mathbb{H}_{if}))^{c}$.

Proof: (a) \Rightarrow (b) Let $\mathbb{G}_{i\mathfrak{f}}$ be any $\mathcal{IF}\widehat{g}^*s\mathcal{CS}$. Then $\mathbb{G}_{i\mathfrak{f}}^c$ is an $\mathcal{IF}\widehat{g}^*s\mathcal{OS}$. So (a) implies that $\widehat{g}^*scl_{i\mathfrak{f}}(\mathbb{G}_{i\mathfrak{f}}^c) = (\widehat{g}^*sint_{i\mathfrak{f}}(\mathbb{G}_{i\mathfrak{f}}))^c$ is an $\mathcal{IF}\widehat{g}^*s\mathcal{OS}$. Thus $\widehat{g}^*sint_{i\mathfrak{f}}(\mathbb{G}_{i\mathfrak{f}})$ is an $\mathcal{IF}\widehat{g}^*s\mathcal{CS}$ in $(\mathbb{U},\tau_{i\mathfrak{f}})$.

 $(\mathbf{b}) \Rightarrow (\mathbf{c}) \text{ Let } \mathbb{G}_{i\mathfrak{f}} \text{ be any } \mathcal{IF}\widehat{g}^*s\mathcal{OS}. \text{ Then we have } \widehat{g}^*scl_{i\mathfrak{f}}(\widehat{g}^*scl_{i\mathfrak{f}}(\mathbb{G}_{i\mathfrak{f}}))^c = \widehat{g}^*scl_{i\mathfrak{f}}(\widehat{g}^*sint_{i\mathfrak{f}}(\mathbb{G}_{i\mathfrak{f}})^c). \text{ Therefore } (\widehat{g}^*scl_{i\mathfrak{f}}(\widehat{g}^*scl_{i\mathfrak{f}}(\mathbb{G}_{i\mathfrak{f}}))^c)^c = (\widehat{g}^*scl_{i\mathfrak{f}}(\widehat{g}^*sint_{i\mathfrak{f}}(\mathbb{G}_{i\mathfrak{f}}^c)))^c. \text{ Since } \mathbb{G}_{i\mathfrak{f}} \text{ is an } \mathcal{IF}\widehat{g}^*s\mathcal{OS}, \mathbb{G}_{i\mathfrak{f}}^c \text{ is } \mathcal{IF}\widehat{g}^*s\mathcal{CS}. \text{ So by } (\mathbf{b}), \\ \widehat{g}^*sint_{i\mathfrak{f}}(\mathbb{G}_{i\mathfrak{f}}^c) \text{ is an } \mathcal{IF}\widehat{g}^*s\mathcal{CS}. \text{ That is } \widehat{g}^*scl_{i\mathfrak{f}}(\widehat{g}^*sint_{i\mathfrak{f}}(\mathbb{G}_{i\mathfrak{f}}^c)) = \widehat{g}^*sint_{i\mathfrak{f}}(\mathbb{G}_{i\mathfrak{f}}^c). \text{ Hence } (\widehat{g}^*scl_{i\mathfrak{f}}(\widehat{g}^*scl_{i\mathfrak{f}}(\mathbb{G}_{i\mathfrak{f}}))^c)^c = (\widehat{g}^*sint_{i\mathfrak{f}}(\mathbb{G}_{i\mathfrak{f}}))^c = \widehat{g}^*scl_{i\mathfrak{f}}(\mathbb{G}_{i\mathfrak{f}}).$

(c) \Rightarrow (d) Let \mathbb{G}_{if} and \mathbb{H}_{if} be any two $\mathcal{IF}\widehat{g}^*sOSs$ in (\mathbb{U},τ_{if}) such that $\widehat{g}^*scl_{if}(\mathbb{G}_{if}) = \mathbb{H}_{if}^c$. (c) implies $\widehat{g}^*scl_{if}(\mathbb{G}_{if}) = (\widehat{g}^*scl_{if}(\mathbb{G}_{if}))^c = (\widehat{g}^*scl_{if}(\mathbb{H}_{if})^c)^c = (\widehat{g}^*scl_{if}(\mathbb{H}_{if}))^c$.

 $(\mathbf{d}) \Rightarrow (\mathbf{a}) \text{ Let } \mathbb{G}_{i\mathfrak{f}} \text{ be an } \mathcal{IF}\widehat{g}^*sOS \text{ in } (\mathbb{U},\tau_{i\mathfrak{f}}). \text{ Put } \mathbb{H}_{i\mathfrak{f}} = (\widehat{g}^*scl_{i\mathfrak{f}}(\mathbb{G}_{i\mathfrak{f}}))^c, \text{ then } \mathbb{H}_{i\mathfrak{f}} \text{ is an } \mathcal{IF}\widehat{g}^*sOS \text{ and } \widehat{g}^*scl_{i\mathfrak{f}}(\mathbb{G}_{i\mathfrak{f}}) = \mathbb{H}_{i\mathfrak{f}}^c.$ Hence by (d), $\widehat{g}^*scl_{i\mathfrak{f}}(\mathbb{G}_{i\mathfrak{f}}) = (\widehat{g}^*scl_{i\mathfrak{f}}(\mathbb{H}_{i\mathfrak{f}}))^c. \text{ Since } \widehat{g}^*scl_{i\mathfrak{f}}(\mathbb{H}_{i\mathfrak{f}}) \text{ is an } \mathcal{IF}\widehat{g}^*sCS, \text{ it follows that } \widehat{g}^*scl_{i\mathfrak{f}}(\mathbb{G}_{i\mathfrak{f}}) \text{ is } \mathcal{IF}\widehat{g}^*sOS.$ This implies that $(\mathbb{U},\tau_{i\mathfrak{f}})$ is an $\mathcal{IF}\widehat{g}^*sEDconS.$

References

- [1] Atanassov K, Intuitionistic fuzzy sets, Fuzzy Sets and Systems, 20, 1986, 87-96.
- [2] Chang C. L, Fuzzy topological spaces, J.Math.Anal.Appl. 24, 1968, 182-190.
- [3] Coker D, An introduction to intuitionistic fuzzy topological space, Fuzzy Sets and Systems, 88, 1997, 81-89.
- [4] Gurcay H, Haydar A and Coker D, On fuzzy continuity in intuitionistic fuzzy topological spaces, The J.Fuzzy Math.5 (2), 1997, 365-378.
- [5] Pious Missier S, Peter Arokiaraj A, A. Nagarajan & S.Jackson, Intuitionistic Fuzzy \hat{g}^* Semi Closed and Open Sets in Intuitionistic Fuzzy Topological Spaces (Communicated).
- [6] Pious Missier S, Peter Arokiaraj A and Jackson S, Intuitionistic Fuzzy g^{*} Semi Continuous Mappings and Irresolute Function in Intuitionistic Fuzzy Topological Spaces, Turkish Journal of Computer and Mathematics Education, 2020, Vol.11, No.3 ISSN 1039-4653, pp. 2601-2609.
- [7] Turnali N and Coker D, *Fuzzy connectedness in intuitionistic fuzzy topological spaces*, FuzzySets and Systems 116, 2000, 369–375.
- [8] Zadeh L.A, Fuzzy sets, Information and control, 8, 1965, 338-353.