Integral Solutions Of Homogeneous
 Quadratic Equation $5 x^{2}+5 y^{2}-6 X Y=13 z^{2}$

Dr.K.S.Araththi ${ }^{1 *}$
${ }^{1 *}$ Assistant Professor, MNM Jain engineering College, Chennai ksaraththi@gmail.com

Abstract

: The ternary homogeneous quadratic Diophantine equation is analyzed for finding its non-zero distinct integral solutions. Seven different patterns of integer solutions are presented. A few interesting relations between the solutions are presented. Introducing the linear transformation $x=u+v, y=u-v$ and employing the method of factorization, different patterns of nonzero distinct integer solutions to the above equations are obtained. Also by using specific transformations, various pattern of solutions are exhibited.

Keywords: Ternary quadratic, homogeneous quadratic, integer solutions.

I.INTRODUCTION

The Ternary Quadratic Diophantine Equation offers an unlimited field for research because of their variety [1-2]. For an extensive review of various problems, one may refer [3-10]. This communication concerns with yet another interesting ternary Quadratic equation $5 x^{2}+5 y^{2}-6 X Y=13 z^{2}$ for determining its infinitely many non-zero integral solutions. Also a few interesting relations among the solutions have been presented..

Notations used :

$\mathrm{t} \mathrm{m}, \mathrm{n}=$ Polygonal number of rank n with size m .
$\mathrm{obl}_{\mathrm{n}}=$ oblong number of rank n

II.METHOD OF ANALYSIS

The Ternary Quadratic Diophantine with three unknowns to be solved for getting non - zerointegral solution is $5 x^{2}+5 y^{2}-6 X Y=13 z^{2}$ \qquad
We present below different patterns of non-zero distinct integer solutions to (1)

Pattern : 1

Introducing the linear transformations
$x=u+v ; y=u-v \ldots \ldots \ldots \ldots \ldots \ldots$ (2), it leads to
$u^{2}+4 v^{2}=13 z^{2}------(3)$
Assume $\mathrm{z}=\mathrm{z}(\mathrm{a}, \mathrm{b})=\mathrm{a}^{2}+4 \mathrm{~b}^{2}$
Also write 13 as

$$
\begin{align*}
& 13=(3+i \sqrt{4})(3-i \sqrt{4})-\cdots-\cdots------(5) \\
& u^{2}+4 v^{2}=(u+i \sqrt{4} v)(u-i \sqrt{4} v) \tag{6}
\end{align*}
$$

Substitute (4) and (4) in (3) and employing the method of factorization, define
$u+i \sqrt{4} v=(3+i \sqrt{4} v)(a+i \sqrt{b})^{2}$
Equating the real and imaginary parts, we get
$\mathrm{u}=3 \mathrm{a}^{2}+` 12 b^{2}-8 a b$
$\mathrm{v}=\mathrm{a}^{2}+{ }^{-} 4 b^{2}+6 a b$
Using this transformation in (1), it leads to the following set of integral solutions:
$x=x(a, b)=u+v=4 a^{2}-16 b^{2}-2 a b$
$y=y(a, b)=u-v=2 a^{2}-8 b^{2}-14 a b$
$\mathrm{z}=\mathrm{z}(\mathrm{a}, \mathrm{b})=\mathrm{a}^{2}+4 \mathrm{~b}^{2}$

Properties:

$x(1, n)-y(n, 1) i s$ a nasty number
$x(10, n)-y(30, n) \equiv 0(\bmod 100)$
$x(1, n)-z(1, n)=-2 o b \ln$

Pattern : 2

Equation (1) can also be written as
$u^{2}-9 z^{2}=4\left(z^{2}-v^{2}\right)$
$(u+3 z)(u-3 z)=4(z+v)(z-v)$
which may be written in the form of ratio as
$(u+3 z) /(z+v)=4(z-v) /(u-3 z)$, where $\frac{A}{B} \neq 0$
On employing the method of cross multiplication, we get
$u=-3 A^{2}+12 B^{2}-8 A B$
$v=A^{2}-4 B^{2}-6 A B$
$\mathrm{z}=\mathrm{z}(\mathrm{a}, \mathrm{b})=-4 \mathrm{~B}^{2}-\mathrm{A}^{2}$
Using this transformation in (1), it leads to the following set of integral solutions:
$x=x(a, b)=u+v=-2 A^{2}+8 B^{2}-14 A B$
$y=y(a, b)=u-v=-4 A^{2}+16 B^{2}-2 A B$
$z=z(a, b)=-a^{2}-4 b^{2}$

Properties:

$$
\begin{aligned}
& x(3, n)+z(n, 6)-9 n^{2} \text { is a nasty number } \\
& y(n, 5)-z(5, n) \equiv 0(\bmod 5) \\
& x(3, n)-y(n, 1) \equiv 0(\bmod 2)
\end{aligned}
$$

It is observed that by rewriting (7) suitably, one may arrive at the following three patterns of solutions to (1).

Pattern : 3

$x=x(A, B)=u+v=4 A^{2}-8 B^{2}-6 A B$
$y=y(A, B)=u-v=2 A^{2}-16 B^{2}+6 A B$
$z=z(A, B)=-A^{2}+4 B^{2}$

Properties:

$x(4, n)+y(n, 1) \equiv 0(\bmod 2)$
$x(n, 1)-z(2, n) \equiv 0(\bmod 4)$
$z(2, n)-y(1, n) \equiv 0(\bmod 2)$

Pattern : 4

$x=x(A, B)=u+v=4 A^{2}-16 B^{2}+2 A B$
$y=y(A, B)=u-v=12 A^{2}-8 B^{2}-14 A B$
$z=z(A, B)=-A^{2}-4 B^{2}$

Properties:

$x(20, n)+y(20, n)$ is a nasty number
$y(40, n)+z(60, n) \equiv 0(\bmod 20)$
$x(n, 1)+y(n, 1)-16 n$ is a nasty number

Pattern : 5

$\mathrm{x}=\mathrm{x}(\mathrm{A}, \mathrm{B})=\mathrm{u}+\mathrm{v}=-2 \mathrm{~A}^{2}+8 \mathrm{~B}^{2}+14 \mathrm{AB}$
$y=y(A, B)=u-v=-4 A^{2}+16 B^{2}+2 A B$
$\mathrm{z}=\mathrm{z}(\mathrm{A}, \mathrm{B})=\mathrm{A}^{2}+4 \mathrm{~B}^{2}$

Properties:

$y(n, 2)+z(2, n)-4 n$ is a nasty number
$z(2, n)+y(n, 1) \equiv 0(\bmod 2)$
$x(1, n)+y(1, n)$ is a nasty number

Pattern : 6

Equation (1) can also be written as

$$
4 v^{2}=13 z^{2}-u^{2}
$$

\qquad
Introducing the transformation
$\mathrm{v}=13 \mathrm{a}^{2}-\mathrm{b}^{2}$ \qquad (9) and

Writing 4 as $4=(2 \sqrt{13}-4 \sqrt{13})(2 \sqrt{13}+4 \sqrt{13})$
Using (9) and (10) in (8) and employing the method of factorization, define
$\sqrt{13} z+u=-26 \sqrt{13} a^{2}-2 \sqrt{13} b^{2}+26 a b$
Equating rational and irrational parts in (8), we get
$u=26 a b$
$v=13 a^{2}-b^{2}$
$\mathrm{Z}=\mathrm{Z}(\mathrm{A}, \mathrm{B})=-26 \mathrm{a}^{2}-2 \mathrm{~b}^{2}$
Using this transformation in (1), it leads to the following set of integral solutions:
$x=x(A, B)=u+v=13 A^{2}-B^{2}+26 A B$
$y=y(A, B)=u-v=-13 A^{2}+B^{2}+26 A B$
$z=z(A, B)=26 A^{2}-2 B^{2}$

Properties:

$x(1, n)-y(1, n)=o b l 3$
$x(1, n)-y(1, n)+5 n^{2} \equiv 0(\bmod 2)$
$x(1, n)+y(1, n)$ is a nasty number

Pattern : 7

Introducing the transformation

$$
\begin{align*}
& z=a^{2}+4 b^{2}----(12), \text { equation (3) takes the form } \\
& (u+i \sqrt{4} v)(u-i \sqrt{4} v)=13\left(a^{2}+4 b^{2}\right)^{2}-----(13) \tag{13}
\end{align*}
$$

Equating rational and irrational parts in (13), we get
$u=3 a^{2}-12 b^{2}-8 a b$
$v=-a^{2}-4 b^{2}+6 a b$

$$
\mathrm{z}=\mathrm{a}^{2}+4 \mathrm{~b}^{2}
$$

Using this transformation in (1), it leads to the following set of integral solutions:
$\mathrm{x}=\mathrm{x}(\mathrm{a}, \mathrm{b})=\mathrm{u}+\mathrm{v}=2 \mathrm{a}^{2}-16 \mathrm{~b}^{2}-2 \mathrm{ab}$
$y=y(a, b)=-a^{2}-4 b^{2}+6 a b$
$z=z(a, b)=a^{2}+4 b^{2}$

Properties:

$x(1, n)-z(1, n)=0(\bmod 8)$
$x(n, 1)-z(2, n) \equiv 0(\bmod 4)$
$x(1, n)+y(1, n)$ is a nasty number

CONCLUSION:

The ternary homogeneous quadratic Diophantine equation is analyzed for finding its non-zero distinct integral solutions. Seven different patterns of integer solutions were presented along with few properties.

REFERENCES

1. R.Anbuselvi K S Araththi On ternary quadratic Equations $2 y^{2}+x y=4 z^{2}$,Indian journal for research analysis,2016,9(6) 379-381.
2. R.Anbuselvi K S Araththi On ternary quadratic Equations $x^{2}+4 y^{2}=40 z^{2}$, Global journal for research analysis,2016,8(5)256-258.
3. Anbuselvi.R, Shanmugavadivu.S.A, "On the Non-Homogeneous Ternary Quadratic equation $x^{2}+x y+y^{2}=$ $12 z^{2 "}$, International journal of Scientific Research (IOSR), 1(12), P : 75-77, (Jan - Feb) 2016.
4. Anbuselvi. R, Shanmugavadivu. S.A, "On the Ternary Quadratic equation $x^{2}+3 x y+y^{2}=z^{4}$ ", Indian journal of Research (paripex), 3(5), P : $459-460$, March 2016, Impact factor : 5.215, IC value : 77.65.
5. Anbuselvi R, Shanmugavadivu SA, "Integral Solutions of the Homogeneous Ternary Quadratic Diophantine Equation $z^{2}=21 x^{2}+y^{2}$ ", International Journal and Scientific Research, 12(5), Page : 695-698, December 2016
6. Anbuselvi R, Shanmugavadivu SA, "Integral Solutions of the Homogeneous Ternary Quadratic Diophantine Equatio $z^{2}=21 x^{2}+y^{2}$ ", International Journal and Scientific Research, 12(5), Page : 695-698, December 2016
7. Anbuselvi. R, Shanmugavadivu. S.A., "Integral Solutions of the Ternary Cubic Diophantine Equation $5\left(x^{2}+y^{2}\right)-9 x y+x+y+1=28 z^{3 "}$, International Education and Research Journal (IERJ), 11(2), Page : 8-10, November 2016.
8. Anbuselvi. R, Shanmugavadivu. S.A., "Integral Solutions of the Ternary Quadratic Diophantine Equation $2 y^{2}+x y$ $=4 z^{2}$ ", Indian Journal of Research (Paripex), 5(6), Page : 629-632, May 2017.
9. Meena K,Vidhyalakshmi S,Gopalan M.A,Priya K,Integral points on the cone $3\left(x^{2}+y^{2}\right)-5 x y=47 z^{2}$, Bulletin of Mathematics and Statistics and Research,2014,2(1),65-70.
10. Gopalan M.A,Vidhyalakshmi S,Nivetha on Ternary Quadratic Equation $4\left(x^{2}+y^{2}\right)-7 x y=31 z^{2}$ Diophantus J.Math,2014,3(1),1-7.
11. Gopalan M.A,Vidhyalakshmi S,Kavitha A,Observation on the Ternary Cubic Equation $x^{2}+y^{2}+x y=12 z^{3}$ Antarctica J.Math,2013;10(5):453-460.
12. Gopalan M.A,Vidhyalakshmi S,Lakshmi K,Lattice points on the Elliptic Paraboloid, $16 y^{2}+9 z^{2}=4 x^{2}$ Bessel J.Math,2013,3(2),137-145.
13. Gopalan M.A,Vidhyalakshmi S,Umarani J,Integral points on the Homogenous Cone $x^{2}+4 y^{2}=37 z^{2}$,Cayley J.Math,2013,2(2),101-107.
14. Gopalan M.A,Vidhyalakshmi S,Sumathi G,Lattice points on the Hyperboloid of one sheet $4 z^{2}=2 x^{2}+3 y^{2}-4$, The Diophantus J.Math,2012,1(2),109-115.
15. Gopalan M.A,Vidhyalakshmi S,Lakshmi K,Integral points on the Hyperboloid of two sheets $3 y^{2}=7 x^{2}-z^{2}+21$, Diophantus J.Math,2012,1(2),99-107.

Journal for Re Attach Therapy and Developmental Diversities
eISSN: 2589-7799
2023 December; 6 (9s): 1916-1920
16. Gopalan M.A,Vidhyalakshmi S,Mallika S,Observation on Hyperboloid of one sheet $x^{2}+2 y^{2}-z^{2}=2$ Bessel J.Math,2012,2(3),221-226.

