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Abstract 

 

Let 𝑥 be a vertex of 𝐺 and 𝑆 ⊆ 𝑉 − {𝑥}. Then for each vertex 𝑦 ∈ 𝑆, 𝑥 ≠ 𝑦. Let 𝑔̃𝑥[𝑦] be a selected fixed shortest 𝑥-𝑦 

path. Then we set 𝐼𝑥[𝑆] = {𝑔̃𝑥(𝑦): 𝑦 ∈ 𝑆} and let 𝑉(𝐼𝑥[𝑆]) = ⋃ 𝑉(𝑃)
𝑝∈𝐼𝑥[𝑆]

. If 𝑉(𝐼𝑥[𝑆]) = 𝑉 for some 𝐼𝑥[𝑆] then the set 𝑆 is 

called a vertex strong geodetic set of 𝐺. The minimum cardinality of a vertex strong geodetic set of 𝐺 is called the vertex 

strong geodetic number of 𝐺 and is denoted by 𝑠𝑔𝑥(𝐺). Some of the standard graphs are determined. Necessary conditions 

for 𝑠𝑔𝑥(𝐺) to be  𝑛 − 1 is given for some vertex 𝑥 in 𝐺. It is shown for every pair of integers 𝑎 and 𝑏 with 2 ≤  𝑎 ≤ 𝑏, 
there exists a connected graph 𝐺 such that 𝑠𝑔(𝐺) = 𝑏 + 2 and 𝑠𝑔𝑥(𝐺) = 𝑎 + 𝑏 + 1 for some 𝑥 in 𝐺. 
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1. Introduction 

 

By a graph 𝐺 =  (𝑉, 𝐸), we mean a finite, undirected connected graph without loops or multiple edges. The order and 

size of 𝐺 are denoted by 𝑛 and 𝑚 respectively. For basic graph theoretic terminology, we refer to [1]. Two vertices 𝑢 and 

𝑣 are said to be adjacent if 𝑢𝑣 is an edge of 𝐺. Two edges of 𝐺 are said to be adjacent if they have a common vertex.  The 

distance 𝑑(𝑢, 𝑣) between two vertices 𝑢 and v in a connected graph 𝐺 is the length of a shortest 𝑢-𝑣 path in 𝐺. 

 

     An 𝑢−𝑣 path of length 𝑑(𝑢, 𝑣) is called an 𝑢−𝑣 geodesic.  An 𝑥 − 𝑦 path of length 𝑑(𝑥, 𝑦) is called geodesic. A vertex 

𝑣 is said to lie on a geodesic 𝑃 if 𝑣 is an internal vertex of 𝑃. The closed interval 𝐼[𝑥, 𝑦] consists of 𝑥, 𝑦 and all vertices 

lying on some 𝑥 − 𝑦 geodesic of 𝐺 and for a non-empty set 𝑆 ⊆  𝑉 (𝐺), 𝐼[𝑆]  = ∪𝑥,𝑦∈𝑆 𝐼[𝑥, 𝑦]. 

 

A set 𝑆 ⊆  𝑉(𝐺) in a connected graph 𝐺 is a geodetic set of 𝐺 if 𝐼[𝑆]  =  𝑉 (𝐺). The geodetic number of 𝐺, denoted by 

𝑔(𝐺), is the minimum cardinality of a geodetic set of 𝐺. The geodetic concept were studied in [1, 3, 4].  Let 𝑆 ⊂ 𝑉(𝐺) and 

𝑥 ∈ 𝑉 such that 𝑥 ∉ 𝑆. Let 𝐼𝑥[𝑦] be the set of all vertices that lies in 𝑥-𝑦 geodesic including 𝑥 and 𝑦, where `𝑦 ∈
𝑆 and 𝐼𝑥[𝑆] = ⋃ 𝐼𝑥[𝑦]𝑦∈𝑆 .  Then 𝑆 is said to be an 𝑥-geodetic set of 𝐺, if  𝐼𝑥[𝑆] = 𝑉. The 𝑥-geodetic concept were studied 

in [10].  The following theorem is used in sequel. 

 

Theorem 1.1 [10] Every extreme vertex of  𝐺 other than the vertex 𝑥 (whether 𝑥 is extreme or not) belongs to every  𝑥-

geodetic set  for any vertex 𝑥 in 𝐺 

 

2.The Vertex Strong Geodetic Number of a Graph 

Definition 2.1. Let 𝑥 be a vertex of 𝐺 and 𝑆 ⊆ 𝑉 − {𝑥}. Then for each vertex y ∈ 𝑆,  
𝑥 ≠ 𝑦.  

 

Let 𝑔̃𝑥[𝑦] be a selected fixed shortest 𝑥-𝑦 path. Then we set 𝐼𝑥[𝑆] = {𝑔̃𝑥(𝑦): 𝑦 ∈ 𝑆} and let 𝑉(𝐼𝑥[𝑆]) = ⋃ 𝑉(𝑃)
𝑝∈𝐼𝑥[𝑆]

.  

 

If 𝑉(𝐼𝑥[𝑆]) = 𝑉 for some 𝐼𝑥[𝑆] then the set 𝑆 is called a vertex strong geodetic set of 𝐺. The minimum cardinality of a 

vertex strong geodetic set of 𝐺 is called the vertex strong geodetic number of 𝐺 and is denoted by 𝑠𝑔𝑥(𝐺).  
 

Example 2.2. For the graph 𝐺 given in Figure 2.1, 𝑠𝑔𝑥-sets and 𝑠𝑔𝑥(𝐺) for each vertex 𝑥  is given in the following Table 

2.1.  
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Table 2.1 

Vertex 𝑠𝑔𝑥-sets 𝑠𝑔𝑥(𝐺) 

𝑣1 {𝑣5, 𝑣6} 2 

𝑣2 {𝑣1, 𝑣5, 𝑣6} 3 

𝑣3 {𝑣1, 𝑣5, 𝑣7} 3 

𝑣4 {𝑣1, 𝑣5, 𝑣7} 3 

𝑣5 {𝑣1, 𝑣7} 2 

𝑣6 {𝑣1, 𝑣5, 𝑣7} 3 

 

Note 2.3. Every vertex of an 𝑥-𝑦  geodesic in 𝑥- vertex strong geodetic the vertex 𝑦. Since by definition a 𝑠𝑔𝑥-sets is 

minimum, the vertex 𝑥 and also the internal vertices of an 𝑥-𝑦 geodesic do not belong to a 𝑠𝑔𝑥-set. 

 

Theorem 2.4. For any vertex 𝑥 in 𝐺, 𝑠𝑔𝑥-set is unique and it is contained in every 𝑥- vertex strong geodetic set of 𝐺. 
Proof. Suppose there are two 𝑠𝑔𝑥-sets say 𝑆1 and 𝑆2. Let 𝑢 be a vertex of 𝐺 such that 𝑢 ∈ 𝑆1  and 𝑢 ∉ 𝑆2. Since 𝑆2 is a 

𝑠𝑔𝑥-set, |𝑆2| = |𝑆1| and hence there exists a vertex 𝑣 ≠ 𝑢 in 𝐺 such that  𝑣 ∈ 𝑆2  and 𝑣 ∉ 𝑆1. Since 𝑆1 is a 𝑠𝑔𝑥-set  and 

𝑣 ∉ 𝑆1, there exists a vertex 𝑤 ∈ 𝑆1, such that 𝑣 ∈ 𝐼[𝑥, 𝑤]. 
Case 1. Suppose 𝑤 ∈ 𝑆2.  Since 𝑣 is an internal vertex of an 𝑥-𝑤 geodesic and 𝑆2 is a 𝑠𝑔𝑥-set, 𝑣 is not in 𝑆2, which is a 

contradiction to 𝑣 ∈ 𝑆2  _______(1) 

Case 2. Suppose 𝑤 ∉ 𝑆2.  Since 𝑆2 is a 𝑠𝑔𝑥-set, there exists an element 𝑦 ∈ 𝑆2 such that 𝑤 lies an 𝑥-𝑦 geodesic say 𝑃.  
From (1), 𝑣 lies on an 𝑥-𝑤 geodesic say 𝑄. Then the union of the geodesic 𝑄 from 𝑥 to 𝑤 and the 𝑤-𝑦 section of the 

geodesic 𝑃 is an 𝑥-𝑦 geodesic so that 𝑣 ∈ 𝐼[𝑥, 𝑦]. Thus 𝑣 is an internal vertex of an 𝑥-𝑦 geodesic. Since 𝑆2 is a  𝑠𝑔𝑥-set, 

𝑣 is not in 𝑆2, Which is a contradiction to 𝑣 ∉ 𝑆2. 
             Now claim that 𝑠𝑔𝑥-set is contained in every vertex strong geodetic set of 𝑥 of 𝐺. Let 𝑦 be an element of the 𝑠𝑔𝑥-

set. say 𝑆 of 𝐺. Since 𝑆 is minimum, 𝑦 ∉ 𝐼𝑥[𝑧] for any other vertex 𝑧 in 𝐺. If there exists vertex strong geodetic set of 𝑥 

of 𝐺. say 𝑆′, such that  𝑦 ∉ 𝑆′, then 𝑦 lies on an 𝑥-𝑣 geodesic for some 𝑣 ∈ 𝑆′ and hence 𝑦 ∈ 𝐼𝑥[𝑣],  which is a 

contradiction. 

Observation 2.5. Let 𝐺 be a connected graph 

𝑣1 

𝑣4 

𝑣5 

𝐺  
Figure 2.1 
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(i) Every simplicial vertex of 𝐺  other than the vertex 𝑥 (whether 𝑥 is simplicial or not) belongs to the 𝑠𝑔𝑥-set for any 

vertex 𝑥 in 𝐺. 
(ii) For any vertex 𝑥, eccentric vertices of 𝑥 belong to the 𝑠𝑔𝑥-set. 

        (iii) No cut vertex of 𝐺 belongs to any 𝑠𝑔𝑥-set. 

Note 2.6.  Even if 𝑥 is a simplicial vertex of 𝐺, 𝑥  does not belong to the 𝑠𝑔𝑥-set.  

Corollary 2.7. Let 𝑇 be a tree with number of end vertices 𝑘. Then 𝑠𝑔𝑥(𝑇) = 𝑘 − 1 or 𝑘 according as 𝑥 is an end or non-

end vertex of  𝑇. 

 Proof.  This follows from Observation 2.4.                                                                           ∎ 

 

Corollary 2.8. Let 𝑃𝑛 be a non-trivial path. Then 𝑠𝑔𝑥(𝑃𝑛) = 1 or 2 according as 𝑥 is an end or non-end vertex. 

Theorem 2.9. For the cycle 𝐺 = 𝐶𝑛(𝑛 ≥ 4), then 𝑠𝑔𝑥(𝐶𝑛) = 2  for every 𝑥 ∈ 𝐺. 
Proof.  Let 𝑉(𝐶𝑛) = {𝑣1, 𝑣2, … , 𝑣𝑛}. Let 𝑥 be a vertex of 𝐺. 

Let 𝑛 be even. Let 𝑦 be the antipodal vertex of 𝑥. Then {𝑦} is not a vertex strong geodetic set of 𝐺. Fix the 𝑥 − 𝑦 geodesic 

𝑃. Let 𝑃1 be another 𝑥-𝑦  geodesic in 𝐺. 
Let 𝑧 be a vertex in 𝑃1 such that 𝑦𝑧 ∈ 𝑉(𝐶𝑛). Let 𝑆 = {𝑦, 𝑧}. Then 𝑆  is a vertex strong geodetic set of 𝐺 so that  𝑠𝑔𝑥(𝐶𝑛) =
2.  
         Next assume that 𝑛 is odd. It is easily verified that 𝑠𝑔𝑥(𝐶𝑛) ≥ 2. Let 𝑦 and 𝑧 be the two antipodal vertices of 𝑥. 

Then 𝑆1 = {𝑦, 𝑧} is  a vertex strong geodetic set of 𝐺 so that  𝑠𝑔𝑥(𝐶𝑛) = 2.       

                                       ∎ 

Corollary 2.10. (i) Let 𝐾1,𝑛−1 be a star. Then 𝑠𝑔𝑥(𝐾1,𝑛) = 𝑛 − 2 or 𝑛 − 1 according as 𝑥 is an end or non-end vertex, 

where 𝑛 ≥ 2. 

(ii) Let 𝐺 = 𝐾𝑛 (𝑛 ≥ 2) be a complete graph. Then 𝑠𝑔𝑥(𝐺) = 𝑛 − 1 for 𝑥 ∈ 𝐺. 

 

Theorem 2.11. For any vertex 𝑥 in 𝐺,  1 ≤ 𝑠𝑔𝑥(𝐺)  ≤  𝑛 − 1. 

Proof. It is clear from the definition of the 𝑠𝑔𝑥-set that  𝑠𝑔𝑥(𝐺) ≥ 1. Also since the vertex 𝑥 does not belong to the  𝑠𝑔𝑥-

set it follows that 𝑠𝑔𝑥(𝐺)  ≤  𝑛 − 1.                                        ∎                                 

Remark 2.12. The bounds for 𝑠𝑔𝑥(𝐺)  in Theorem 2.11 are sharp. For an even cycle 𝐶2𝑛, 
 𝑠𝑔𝑥(𝐶2𝑛) = 2 for any vertex 𝑥 in 𝐶2𝑛. Also for any non-trivial path 𝑃𝑛, 𝑠𝑔𝑥(𝑃𝑛) = 1.  
 For any end vertex 𝑥 in 𝑃𝑛. For the complete graph 𝐾𝑛, 𝑠𝑔𝑥(𝐾𝑛) = 𝑛 − 1 for every vertex 𝑥 in 𝐾𝑛 . 
Theorem 2.13. For any integers 𝑎, such that 1 ≤  𝑎 ≤ 𝑛 − 1, there is a minimal with respect to graph 𝐺 of order 𝑛 and a 

vertex 𝑥 such that 𝑠𝑔𝑥(𝐺) = 𝑎.  

Proof. If 𝑎 = 𝑛 − 1 or 𝑛 − 2, 𝐺 = 𝐾1,𝑛−1 then the theorem follows from Corollary 2.10 by using 𝐺 = 𝐾1,𝑛−1. For 1 ≤

 𝑎 ≤ 𝑛 − 3, the tree 𝑇 in Figure 2.2 is provided for𝑛 = 𝑘 + 𝑎 vertices and it follows from Corollary 2.7 that 𝑠𝑔𝑥(𝑇) = 𝑎, 

where 𝑥 is any non-end vertex of 𝑇. As the graph is a tree, it is minimal with respect to edges.        ∎   

 

 
 

Theorem 2.14. For any graph 𝐺,   𝑠𝑔𝑥(𝐺) = 𝑛 − 1 if and only if 𝑑𝑒𝑔𝑥 = 𝑛 − 1.  
Proof. Let 𝑠𝑔𝑥(𝐺) = 𝑛 − 1. Assume that 𝑑𝑒𝑔𝑥 < 𝑛 − 1. Then there is a vertex 𝑢 in 𝐺, such that 𝑢𝑥 ∉ 𝐸(𝐺). Since 𝐺 is 

connected, there is geodesic from 𝑥 to 𝑢 say 𝑃 with length at least 2. By Note 2.3, 𝑥 and the internal vertices of 𝑛 do not 

belong to the 𝑠𝑔𝑥-set and hence 𝑠𝑔𝑥(𝐺) ≤ 𝑛 − 2, which is a contradiction. 

        Conversely, if 𝑑𝑒𝑔𝑥 = 𝑛 − 1,  then all other vertices of 𝐺 are close to 𝑥 so the   𝑠𝑔𝑥-set is made up of all these 

vertices. Therefore, 𝑠𝑔𝑥(𝐺) = 𝑛 − 1.     ∎ 

 

Theorem 2.15. Let 𝐺 be a connected graph. For a vertex 𝑥 in 𝐺,  𝑠𝑔𝑥(𝐺) = 1 if and only if 𝑥 is an end vertex of 𝑃, 𝐺 = 𝑃𝑛 .  
Proof. Let 𝑥 be an end vertex of 𝑃. Then by Corollary 2.8, 𝐺 = 𝑃𝑛 . Conversely, let  𝑠𝑔𝑥(𝐺) = 1. Then by Corollary 

  

𝑢1 

 

𝑢2 

𝑢𝑎−1 

   𝑣3 𝑣𝑘 

        𝐺 
               Figure 2.2 
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2.8, 𝑠𝑔𝑥(𝐺) = 1 ∀𝑥 ∈ 𝑉. Then there exists a vertex 𝑦 such that every vertex of 𝐺 is on a diameteral path joining 𝑥 and 𝑦. 
Let 𝑃: 𝑥, 𝑥0, 𝑥1, 𝑥2, … , 𝑥𝑛 = 𝑦  be the fixed 𝑥-𝑦 geodesic. We prove that 𝐺 = 𝑃𝑛 , Suppose not the case. Then there exists  

𝑧 ∈ 𝑉\𝑉(𝑃𝑛). Then 𝑧 ∉ 𝐼𝑥[𝑃], which is a contradiction. Therefore  𝐺 = 𝑃𝑛 .         ∎ 

 

Theorem 2.16. Let 𝐾𝑟,𝑠  (𝑟, 𝑠 ≥ 2) be a complete bipartite graph with bipartition  

(𝑋, 𝑌). Then 𝑠𝑔𝑥(𝐾𝑟,𝑠) is 𝑠 or 𝑠 − 1 according as 𝑥 is in 𝑋 or 𝑥 is in 𝑌.   

 

Proof. Case (i) 𝑥 ∈ 𝑋. 
Without loss of generality, let 𝑥 = 𝑥1. Since 𝑑(𝑥, 𝑦) = 2 for every 𝑦 ∈ 𝑋 − {𝑥}, we fix 𝑃𝑖 : 𝑥, 𝑦𝑖 , 𝑥𝑖+1 (1 ≤ 𝑖 ≤ 𝑟 − 1) and 

so 𝑠𝑔𝑥(𝐺) ≥ 𝑟 − 1. Let 𝑆 = {𝑥2, 𝑥3, … , 𝑥𝑟}. Then the vertices 𝑦𝑟 , 𝑦𝑟+1, … , 𝑦𝑠 does not lie on any 𝑥 − 𝑥𝑖  geodesic 
(1 ≤ 𝑖 ≤ 𝑟 − 1). Hence it follows that  𝑆1 = {𝑦𝑟 , 𝑦𝑟+1, … , 𝑦𝑠} is a subset of every vertex strong geodetic set of 𝐺 and so 

𝑠𝑔𝑥(𝐺) ≥ 𝑟 − 1 + (𝑠 − (𝑟 − 1)) = 𝑠.  Let 𝑆2 = 𝑆 ∪ 𝑆1. Then 𝑆2 is a vertex strong geodetic set of 𝐺 so that 𝑠𝑔𝑥(𝐺) = 𝑠. 

Case (i) 𝑥 ∈ 𝑌. 
Without loss of generality, let 𝑥 = 𝑦1 . Since 𝑑(𝑥, 𝑦) = 2 for every 𝑦 ∈ 𝑌 − {𝑥}, we fix 𝑃𝑖 : 𝑥, 𝑦𝑖 , 𝑥𝑖+1 (1 ≤ 𝑖 ≤ 𝑠 − 1) and 

so 𝑠𝑔𝑥(𝐺) ≥ 𝑠 − 1. Let 𝑆 = {𝑦2, 𝑦3, … , 𝑦𝑠}. Then 𝑆 is a vertex strong geodetic set of 𝐺 so that 𝑠𝑔𝑥(𝐺) = 𝑠 − 1.   ∎     

 

Theorem 2.17. For the wheel  𝑊𝑛 = 𝐾1 + 𝐶𝑛−1  (𝑛 ≥ 5), 𝑠𝑔𝑥(𝑊𝑛) = 𝑛 − 1 or 𝑛 − 3 according as 𝑥 is 𝐾1 or 𝑥 is in 𝐶𝑛−1. 

Proof. Let 𝑉(𝐾1) = 𝑦 and 𝑉(𝐶𝑛−1) = {𝑣1, 𝑣2, … , 𝑣𝑛−1}. If 𝑥 ∈ 𝑉(𝐾1). Then by  

Theorem 2.14, 𝑠𝑔𝑥(𝑊𝑛) = 𝑛 − 1. Let 𝑥 ∈ 𝑉(𝐶𝑛−1). Without loss of generality, 𝑥 = 𝑣1. Fix 𝑃: 𝑣1, 𝑥, 𝑣2.  Since 𝑑(𝐺) = 2.  
𝑆 = {𝑢3, 𝑢4, … , 𝑢𝑛−2} is the set of antipodal vertices of 𝑥.  Then by Observation 2.5 (ii), 𝑆 is a subset of every vertex 

strong geodetic set of 𝐺 and so 𝑠𝑔𝑥(𝐺) ≥ 𝑛 − 4. Since 𝑦 ∉ 𝐼𝑥[𝑆],  𝑆 is not a vertex strong geodetic set of 𝐺 and so 

𝑠𝑔𝑥(𝐺) ≥ 𝑛 − 3. Let 𝑆1 = 𝑆 ∪ {𝑦}.  Then 𝑆1 is a vertex strong geodetic set of 𝐺 so that 𝑠𝑔𝑥(𝐺) =  𝑛 − 3.  ∎ 

 

Theorem 2.18. For the fan graph  𝐺 = 𝐾1 + 𝑃𝑛−1   (𝑛 ≥ 5)  

𝑠𝑔𝑥(𝐺) = {
𝑛 − 1     𝑖𝑓 𝑥 ∈ 𝑉(𝐾1)
𝑛 − 3  𝑖𝑓 𝑥 ∈ 𝑉(𝑃𝑛−1)

  

Proof. Let 𝑉(𝐾1) = 𝑦 and 𝑉(𝑃𝑛−1) = {𝑣1, 𝑣2, … , 𝑣𝑛−1}.  
Case (i) Let 𝑥 = 𝑦, Fix 𝑃: 𝑣1, 𝑥, 𝑣2. Let 𝑆 = {𝑣1, 𝑣2, … , 𝑣𝑛}. Then 𝑆 is a set of all eccentric vertices for 𝑥. Observation 2.5 

(ii) 𝑆 is  a subset of every vertex strong geodetic set of 𝐺 and so 𝑠𝑔𝑥(𝐺) ≥ 𝑛 − 1. Since 𝑆 is a 𝑠𝑔𝑥-set of 𝐺 we have 

𝑠𝑔𝑥(𝐺) = 𝑛 − 1. Let 𝑥 ∈ 𝑉(𝑃𝑛−1). Let 𝑥 = 𝑣1. Then 𝑆 = {𝑣3, 𝑣4, … , 𝑣𝑛−1} are eccentric vertices of 𝐺. By Observation 

2.5(ii) 𝑆 is a subset of every vertex strong geodetic set of 𝐺 so that 𝑠𝑔𝑥(𝐺) ≥ 𝑛 − 3. Since 𝑆 is a 𝑠𝑔𝑥-set of 𝐺, we have 

𝑠𝑔𝑥(𝐺) ≥ 𝑛 − 3.                                                        
If 𝑥 = 𝑣𝑛−1 by the similar way we can prove that 𝑠𝑔𝑥(𝐺) = 𝑛 − 3. Let 𝑥 ∈ {𝑣2, 𝑣3, … , 𝑣𝑛−2}. Without loss of generality 

let us assume that 𝑥 = 𝑣2. Then {𝑣1, 𝑣𝑛−1} is  a set of extreme vertices of 𝐺. By Observation 2.5 (i), {𝑣1, 𝑣𝑛−1} is a subset 

of every 𝑠𝑔𝑥-set of 𝐺. {𝑣4, 𝑣5, … , 𝑣𝑛−2} is a set of eccentric vertices of 𝑣2. Then  {𝑣4, 𝑣5, … , 𝑣𝑛−2}  is  a subset of every 

vertex strong geodetic set of 𝐺 and so 𝑠𝑔𝑥(𝐺) ≥  𝑛 − 3. Let 𝑆′ = {𝑣1, 𝑣4, 𝑣5, … , 𝑣𝑛−2, 𝑣𝑛−1}.  Then 𝑆′ is a 𝑠𝑔𝑥-set of 𝐺 

so that  𝑠𝑔𝑥(𝐺) = 𝑛 − 3.                                  

∎      

Theorem 2.19. Let 𝐺 be a connected graph with 𝑘 cut vertices. Then every vertex of 𝐺 is either a cut vertex or an extreme 

vertex if and only if 𝑠𝑔𝑥(𝐺) = 𝑛 − 𝑘 or 𝑛 − 𝑘 − 1 for any vertex 𝑥 in 𝐺.  
Proof. Let 𝐺 be a connected graph in which each vertex falls into one of two categories∶  𝑎 cut vertex or an extreme vertex 

given that 𝑥 is not a member of the 𝑠𝑔𝑥-set of 𝐺. Observation 2.5 (i) states that 𝑠𝑔𝑥(𝐺) = 𝑛 − 𝑘  or 𝑛 − 𝑘 − 1 depending 

on whether 𝑥 is a cut vertex or an extreme vertex. 

Conversely, suppose that 𝑠𝑔𝑥(𝐺) = 𝑛 − 𝑘 or 𝑛 − 𝑘 − 1 for any vertex 𝑥 in 𝐺. 
Suppose there is a vertex 𝑥 in 𝐺  which is neither a cut vertex nor an extreme vertex. Since 𝑥 is not an extreme vertex 

𝑁(𝑥) does not induce a complete subgraph and hence there exist 𝑢 and  𝑣 in 𝑁(𝑥) such that 𝑑(𝑢, 𝑣) = 2. Also, since 𝑥 is 

not a cut vertex of 𝐺, 𝐺 − {𝑥} is connected and hence there exists a 𝑢 − 𝑣 geodesic say 𝑃: 𝑢, 𝑢1, 𝑢2, … , 𝑢𝑛, 𝑣 in 𝐺 − {𝑥}. 
Then 𝑃 ∪ {𝑣, 𝑥, 𝑢} is a shortest cycle, say 𝐶, that contains both the vertices 𝑢 and 𝑣 with length at least 4 in 𝐺. 
Case 1. Suppose either 𝑢 or 𝑣 is not a cut vertex of 𝐺. Assume that 𝑢 is not a cut vertex of 𝐺. It is obvious that 𝑥 is on a 

𝑢 − 𝑣 geodesic, hence 𝑢 and 𝑥 are not part of the 𝑠𝑔𝑥-set. Therefore according to Theorem 2.11, 𝑠𝑔𝑥(𝐺) ≤ 𝑛 − 𝑘 − 2, 
which is a contradiction to the assumption. 

Case 2. When 𝑢 and 𝑣 are both cut vertices of 𝐺. According to Theorem 1.1, there is a division of the set of vertices 𝑉 −
{𝑣} into subsets 𝑈 and 𝑊 such that the vertex 𝑣 is on every 𝑢1 − 𝑤1  path for vertices 𝑢1 ∈ 𝑈 and 𝑤1 ∈ 𝑊. Without loss 

of generality, assume that 𝑥 ∈ 𝑈.  Let 𝑦 be vertex in 𝑊 with maximum distance from 𝑣 in 𝑊.  By choice of 𝑦,  the vertex 

𝑦 is not a cut vertex of 𝐺 given that cycle 𝐶′s order is at least 4, the vertices  𝑥 and 𝑦 do not belong to the 𝑠𝑔𝑥-set and 

hence by Theorem 2.11 𝑠𝑔𝑥(𝐺) ≤ 𝑛 − 𝑘 − 2, which is a contradiction to the assumption. Hence every vertex of 𝐺 is 
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either a cutvertex or an extreme vertex.                                                       ∎                

 

Corollary 2.20.  Let 𝐺 be a connected block graph with number of cut vertices 𝑘. Then for any vertex in 𝐺, 𝑠𝑔𝑥(𝐺) =
𝑛 − 𝑘 or 𝑛 − 𝑘 − 1.  
Proof. Let 𝐺 be a connected block graph. Then each 𝐺 vertex is either cut or an extreme vertex and hence by Theorem 

2.18, 𝑠𝑔𝑥(𝐺) = 𝑛 − 𝑘 or 𝑛 − 𝑘 − 1 for any vertex 𝑥 in 𝐺.     
                                                                                                                                         ∎                                                                                                                                      

Theorem 2.21. If 𝐺 is a connected of order 𝑛 and diameter 𝑑, then 𝑠𝑔𝑥(𝐺) ≤ 𝑛 − 𝑑 + 1 for any vertex 𝑥 in 𝐺.   

 

Proof. For each vertex 𝑥 in 𝐺 then 𝑠𝑔𝑥(𝐺) = 𝑛 − 1 = 𝑛 − 𝑑 if 𝐺 = 𝐾𝑝. So 𝐺 ≠ 𝐾𝑝. Let 𝑢 and 𝑣 be two vertices of 𝐺 

such that 𝑑(𝑢, 𝑣) = 𝑑 and let 𝑢 = 𝑣0, 𝑣1, … , 𝑣𝑑 = 𝑣 be a  𝑢-𝑣 geodesic of length 𝑑. Now let 𝑆 = 𝑉(𝐺) −
{𝑣1, 𝑣2, … , 𝑣𝑑−1}.  If 𝑥 = 𝑣𝑖  (1≤ 𝑖 ≤ 𝑑 − 1),  then clearly 𝑆 is an 𝑥-vertex strong geodetic set of 𝐺 so that  𝑠𝑔𝑥(𝐺) ≤
|𝑆| = 𝑛 − 𝑑 + 1. If 𝑥 = 𝑣𝑖   (𝑖 = 0, 𝑑), then 𝑆 − {𝑥} is a 𝑥-vertex strong geodetic set of 𝐺 so that 𝑠𝑔𝑥(𝐺) ≤ |𝑆| − 1 =
𝑛 − 𝑑. 
              Let 𝑥 ≠ 𝑣𝑖   (0 ≤ 𝑖 ≤ 𝑑).  Let 𝑃 and 𝑄 be 𝑥-𝑣0 and 𝑥-𝑣𝑑 geodesic respectively. Let 𝑦 be the last vertex common 

to both 𝑃 and 𝑄. Let 𝑃1 be the 𝑦-𝑣0 geodesic on 𝑃 and let 𝑄1 be the 𝑦-𝑣𝑑 geodesic on 𝑄. Let 𝑇 = (𝑉(𝐺) −
[𝑉(𝑃1) ∪ 𝑉(𝑄1)] ∪ {𝑣0, 𝑣𝑑}.  Then it is clear that 𝑇 is a 𝑥-vertex strong geodetic set of 𝐺 and so. 

               𝑠𝑔𝑥(𝐺) ≤ 𝑛 − [𝑑(𝑦, 𝑣0) + 𝑑(𝑦, 𝑣𝑑) + 1] + 2                        

                             ≤ 𝑛 − [𝑑(𝑣0, 𝑣𝑑) + 1] + 2, by triangle inequality 

                               = 𝑛 − 𝑑 + 1 

    Thus 𝑠𝑔𝑥(𝐺) ≤ 𝑛 − 𝑑 + 1 for any vertex 𝑥 in 𝐺.        ∎  

Theorem 2.22. For every non-trivial tree 𝑇. Let  𝑠𝑔𝑥(𝑇) = 𝑛 − 𝑑 or 𝑛 − 𝑑 + 1 for any vertex 𝑥 in 𝑇 if and only if  𝑇 is 

caterpillar. 

Proof. Let 𝑇 be any non-trivial tree. Let 𝑃: 𝑢 = 𝑣0, 𝑣1, … , 𝑣𝑑 = 𝑣 be a diametral path. Let 𝑘 be the number of end vertices 

of 𝑇 and 𝑙 be the number of internal vertices of 𝑇 other than 𝑣0, 𝑣1, … , 𝑣𝑑−1. Then 𝑑 − 1 + 𝑘 + 𝑘 = 𝑝. By Corollary 2.7,  

𝑠𝑔𝑥(𝑇) = 𝑘 or 𝑘 − 1 for any vertex 𝑥 in 𝑇 and so 𝑠𝑔𝑥(𝑇) = 𝑝 − 𝑑 − 𝑙 + 1 or 𝑝 − 𝑑 − 𝑙 for any vertex 𝑥 in 𝑇. Hence 

𝑠𝑔𝑥(𝐺) = 𝑛 − 𝑑 + 1 or 𝑛 − 𝑑  for any vertex 𝑥 in 𝑇 if and only if  𝑙 = 0, if and only if all the internal vertices of 𝑇 lie on 

the diametral path 𝑃, if and only if 𝑇 is caterpillar.             ∎ 

 

Theorem 2.23. For positive integers 𝑟, 𝑑 and 𝑙 ≥ 2 with 𝑟 ≤ 𝑑 ≤ 2𝑟, there exists a connected graph 𝐺 with  𝑟𝑎𝑑𝐺 =  𝑟, 

𝑑𝑖𝑎𝑚𝐺 =  𝑑  and 𝑠𝑔𝑥(𝐺) = 𝑙 for some vertex 𝑥 in 𝐺.  
Proof. If 𝑟 = 1, then 𝑑 = 1 or 2. If 𝑑 = 1, let 𝐺 = 𝐾𝑙+1. Then by Corollary 2.20, 𝑠𝑔𝑥(𝐺) = 𝑙 for any vertex 𝑥 in 𝐺. If 
𝑑 = 2, let 𝐺 = 𝐾1,𝑙 . Then by Corollary 2.20, 𝑠𝑔𝑥(𝐺) = 𝑙 for the cut vertex 𝑥 in 𝐺. Now let 𝑟 ≥ 2. We construct a graph 

𝐺 with the desired properties as follows. 

  Case 1.  Suppose 𝑟 =  𝑑. For 𝑙 = 2.  Let 𝐺 = 𝐶2𝑟+1. Then 𝑟 = 𝑑 and 𝑠𝑔𝑥(𝐺) = 2 for any vertex 𝑥 in 𝐺. Now let 𝑙 ≥ 3. 
Let 𝐶2𝑟: 𝑢1, 𝑢2, … , 𝑢2𝑟 , 𝑢1 be a cycle of order 2𝑟. Let 𝐺 be the graph obtained by adding the new vertices 𝑥1, 𝑥2, … , 𝑥𝑙−1 

and joining each 𝑥𝑖  (1 ≤  𝑖 ≤  𝑙) with 𝑢1 and 𝑢2 of 𝐶2𝑟. The graph 𝐺  is shown in Figure 2.3. 

 

                  
It is easily verified that the eccentricity of each vertex of 𝐺 is 𝑟 so that 𝑟𝑎𝑑𝐺 =  𝑑𝑖𝑎𝑚𝐺 =  𝑟.  Fix P: 

𝑥1, 𝑢1, 𝑢2, 𝑢3 … , 𝑢𝑟+1. Let 𝑊 ={𝑥1, 𝑥2, … , 𝑥𝑙−1} be the set of all extreme vertices of 𝐺 and let 𝑥 = 𝑢𝑟+1. Then by 

Observation 2.5 (i) 𝑊 is a subset  of every vertex strong geodetic set of  𝐺  and so 𝑠𝑔𝑥(𝐺) ≥ 𝑙 − 1. Since 𝑊 is not a 

vertex strong geodetic set of 𝐺,  𝑠𝑔𝑥(𝐺) ≥ 𝑙. Let 𝑆 = 𝑊 ∪ {𝑢𝑟+2}. Then 𝑊 is a vertex strong geodetic set of 𝐺,  𝑠𝑔𝑥(𝐺) =
𝑙.    

G 
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Case 2.  Suppose 𝑟 < 𝑑 ≤ 2𝑟. Fix P: 𝑢𝑑−𝑟 , 𝑢𝑑−𝑟−1, … 𝑢2, 𝑢1, 𝑣1, 𝑣2 … , 𝑣𝑟+1.  Let 𝐶2𝑟: 𝑣1, 
𝑣2, … , 𝑣2𝑟 , 𝑣1 be a cycle of order 2𝑟 and let 𝑃𝑑−𝑟+1 ∶ 𝑢0, 𝑢1, 𝑢2, … , 𝑢𝑑−𝑟  be a path of order 𝑑− 𝑟 + 1. Let 𝐻 be the graph 

obtained from 𝐶2𝑟 and 𝑃𝑑−𝑟+1 by identifying 𝑣1 in 𝐶2𝑟 and 𝑢0 in 𝑃𝑑−𝑟+1. If   𝑙 =  2, then let 𝐺 = 𝐻 let 𝑥 = 𝑣𝑟+1. Then  

𝑆 = {𝑣𝑟 , 𝑢𝑑−𝑟 }  is a 𝑠𝑔𝑥-set of 𝐺 so that 𝑙 = 2.  If  𝑙 ≥ 3, then we add (𝑙 − 2) new vertices 𝑤1 , 𝑤2 , … , 𝑤𝑙−2  to 𝐻 by 

joining each vertices 𝑤𝑖  (1 ≤  𝑖 ≤  𝑙 –  2) to the vertex 𝑢𝑑−𝑟−1 and obtain the graph 𝐺 of Figure 2.4.  Now 𝑟𝑎𝑑𝐺 = 𝑟  

and 𝑑𝑖𝑎𝑚𝐺 =  𝑑. Let 𝑊 = {𝑤1, 𝑤2, … , 𝑤𝑙−2, 𝑢𝑑−𝑟} be the set of end vertices of 𝐺 and let 𝑥 = 𝑣𝑟+1. Then by Observation 

2.5 (i)  𝑊 is a subset of every vertex strong geodetic set of 𝐺 and so 𝑠𝑔𝑥(𝐺) ≥ 𝑙 − 1. Since 𝑊 is not a vertex strong 

geodetic set of 𝐺,  𝑠𝑔𝑥(𝐺) ≥ 𝑙. 
Let 𝑆1 = 𝑊 ∪ {𝑣𝑟+1}. Then 𝑊 is a vertex strong geodetic set of 𝐺,  𝑠𝑔𝑥(𝐺) = 𝑙.     ∎ 
 

            
 

Theorem 2.24. For any vertex 𝑥 in 𝐺,  𝑠𝑔(𝐺) ≤ 𝑠𝑔𝑥(𝐺) + 1.  
Proof. Let 𝑥 be any vertex of 𝐺 and let 𝑆𝑥 be a 𝑠𝑔𝑥-set of 𝐺 lies on an 𝑥 − 𝑦 geodesic for some 𝑦 in 𝑆𝑥 .  Thus 𝑆𝑥 ∪ {𝑥} is 

a vertex strong geodetic set of 𝐺. Since  𝑠𝑔𝑥(𝐺)  is the minimum cardinality of a vertex strong geodetic set, it follows that 

𝑠𝑔(𝐺) ≤ 𝑠𝑔𝑥(𝐺) + 1.   ∎ 

Theorem 2.25. For every pair of integers 𝑎 and 𝑏 with 1 ≤  𝑎 ≤ 𝑏, there exists a connected graph 𝐺 such that 𝑔𝑥(𝐺) =
𝑎 and 𝑠𝑔𝑥(𝐺) = 𝑏 for some 𝑥 ∈ 𝑉(𝐺). 
Proof.  Let 𝑃: 𝑥, 𝑦, 𝑤, 𝑧 be a path on three vertices. Let 𝐺 be the graph obtained from 𝑃 by adding the new vertices 

 𝑧1, 𝑧2, … , 𝑧𝑎−1, 𝑣1, 𝑣2, … , 𝑣𝑏−𝑎 and introducing the edges 𝑧𝑧𝑖 (1 ≤  𝑖 ≤  𝑎), 𝑧𝑣𝑖  (1 ≤  𝑖 ≤  𝑏 − 𝑎) and 𝑦𝑣𝑖  (1 ≤
 𝑖 ≤  𝑏 − 𝑎). The graph  𝐺  is shown in Figure 2.5. Let 𝑥 = 𝑦.   
              First we prove that  𝑔𝑥(𝐺) = 𝑎. Let  𝑍 = {𝑧1, 𝑧2, … , 𝑧𝑎} be the end vertices of 𝐺. Then by Theorem 1.1 

(i),  𝑍 is a subset of every 𝑔𝑥-set of 𝐺 and so 𝑔𝑥(𝐺) ≥ 𝑎. Since 𝑍 is a 𝑔𝑥-set of 𝐺, 𝑔𝑥(𝐺) = 𝑎. 
              Next we prove that 𝑠𝑔𝑥(𝐺) = 𝑏. We fix the geodesic 𝑃: 𝑥, 𝑤, 𝑧, 𝑧1 By Observation 2.5 (i), 𝑍 is a subset of every 

𝑠𝑔𝑥-set of 𝐺.  It is easily observed that every 𝑠𝑔𝑥- set of 𝐺 contains each 𝑣𝑖 (1 ≤  𝑖 ≤  𝑏 − 𝑎) and so 𝑠𝑔𝑥(𝐺)  ≥ 𝑎 +
𝑏 − 𝑎 = 𝑏. Let 𝑆 = 𝑍 ∪ {𝑣1, 𝑣2, … , 𝑣𝑏−𝑎}. Then 𝑆 is a 𝑠𝑔𝑥-set of 𝐺 so that   𝑠𝑔𝑥(𝐺) = 𝑏.                  ∎ 
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3. Conclusions 

 

In this article we explore the concept of the strong geodetic number of a graph. We extend this concept to some other 

distance related parameters in graphs. 
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