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Abstract

Let x be a vertex of G and S € V — {x}. Then for each vertex y € S, x # y. Let g,[y] be a selected fixed shortest x-y

path. Then we set I.[S] = {G,(y):y € S} and let V(I[S]) = UV (P). If V(I[S]) = V for some I,.[S] then the set S is
PEIL[S]

called a vertex strong geodetic set of G. The minimum cardinality of a vertex strong geodetic set of G is called the vertex
strong geodetic number of G and is denoted by sg,.(G). Some of the standard graphs are determined. Necessary conditions
for sg,(G) to be n— 1 is given for some vertex x in G. It is shown for every pair of integers a and b with 2 < a < b,
there exists a connected graph G such that sg(G) = b + 2 and sg,(G) = a + b + 1 for some x in G.
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1. Introduction

By a graph G = (V,E), we mean a finite, undirected connected graph without loops or multiple edges. The order and
size of G are denoted by n and m respectively. For basic graph theoretic terminology, we refer to [1]. Two vertices u and
v are said to be adjacent if uv is an edge of G. Two edges of G are said to be adjacent if they have a common vertex. The
distance d(u, v) between two vertices u and v in a connected graph G is the length of a shortest u-v path in G.

An u—v path of length d(u, v) is called an u—v geodesic. An x — y path of length d(x, y) is called geodesic. A vertex
v is said to lie on a geodesic P if v is an internal vertex of P. The closed interval I[x, y] consists of x, y and all vertices
lying on some x — y geodesic of G and for a non-empty setS S V (G), I[S] = Uyyes I[x, Y]

AsetS < V(G)ina connected graph G is a geodetic set of G if I[S] = V (G). The geodetic number of G, denoted by
g(&), is the minimum cardinality of a geodetic set of G. The geodetic concept were studied in [1, 3,4]. LetS < V(G) and
x €V such that x € S. Let I,[y] be the set of all vertices that lies in x-y geodesic including x and y, where ‘y €
S and I [S] = Uyes I[y]. Then S is said to be an x-geodetic set of G, if I,[S] = V. The x-geodetic concept were studied
in [10]. The following theorem is used in sequel.

Theorem 1.1 [10] Every extreme vertex of G other than the vertex x (whether x is extreme or not) belongs to every x-
geodetic set for any vertex x in G

2.The Vertex Strong Geodetic Number of a Graph
Definition 2.1. Let x be a wvertex of G and S<V —{x}. Then for each wvertex y €S,
X #EY.

Let g, [y] be a selected fixed shortest x-y path. Then we set I,.[S] = {§,(y):y € S} and let V(I.[S]) = U V(P).
PEl[S]

If V(I,[S]) = V for some I,[S] then the set S is called a vertex strong geodetic set of G. The minimum cardinality of a
vertex strong geodetic set of G is called the vertex strong geodetic number of G and is denoted by sg, (G).

Example 2.2. For the graph G given in Figure 2.1, sg,.-sets and sg,.(G) for each vertex x is given in the following Table
2.1.
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Figure 2.1
Table 2.1
Vertex 5gy-Sets 59.(G)

U1 {vs, ve} 2
1) {v1, Vs, v6} 3
VU3 {v1,vs, 7} 3
Vs {v1,vs, 7} 3
Vs {v,v7} 2
Ve {v1,vs,v7} 3

Note 2.3. Every vertex of an x-y geodesic in x- vertex strong geodetic the vertex y. Since by definition a sg,-sets is
minimum, the vertex x and also the internal vertices of an x-y geodesic do not belong to a sg,-set.

Theorem 2.4. For any vertex x in G, sg,-set is unique and it is contained in every x- vertex strong geodetic set of G.
Proof. Suppose there are two sg,-sets say S; and S,. Let u be a vertex of G such that u € S; and u € S,. Since S, isa
sg.-set, |S,| = [S;| and hence there exists a vertex v # w in G such that v € S, and v € S,. Since S; isa sg,-set and
v & S, there exists a vertex w € S;, such that v € I[x, w].
Case 1. Suppose w € S,. Since v is an internal vertex of an x-w geodesic and S, is a sg,-set, v is not in S,, which is a
contradictionto v € S, 1)
Case 2. Suppose w & S,. Since S, is a sg,-set, there exists an element y € S, such that w lies an x-y geodesic say P.
From (1), v lies on an x-w geodesic say Q. Then the union of the geodesic Q from x to w and the w-y section of the
geodesic P is an x-y geodesic so that v € I[x,y]. Thus v is an internal vertex of an x-y geodesic. Since S, isa sg,-set,
visnotin S,, Which is a contradictionto v & S,,.

Now claim that s g,-set is contained in every vertex strong geodetic set of x of G. Let y be an element of the sg,.-
set. say S of G. Since S is minimum, y & I,[z] for any other vertex z in G. If there exists vertex strong geodetic set of x
of G. say S', such that y & S’, then y lies on an x-v geodesic for some v € S’ and hence y € I, [v], which is a
contradiction.
Observation 2.5. Let G be a connected graph
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(i) Every simplicial vertex of G other than the vertex x (whether x is simplicial or not) belongs to the sg,-set for any
vertex x in G.
(ii) For any vertex x, eccentric vertices of x belong to the sg,-set.
(i) No cut vertex of G belongs to any sg,-set.
Note 2.6. Even if x is a simplicial vertex of G, x does not belong to the sg,.-set.
Corollary 2.7. Let T be a tree with number of end vertices k. Then sg,(T) = k — 1 or k according as x is an end or non-
end vertex of T.
Proof. This follows from Observation 2.4. ]

Corollary 2.8. Let B, be a non-trivial path. Then sg, (B,) = 1 or 2 according as x is an end or non-end vertex.
Theorem 2.9. For the cycle G = C,(n = 4), then sg,(C,) = 2 forevery x € G.
Proof. LetV(C,) = {vy, vy, ..., v }. Let x be a vertex of G.
Let n be even. Let y be the antipodal vertex of x. Then {y} is not a vertex strong geodetic set of G. Fix the x — y geodesic
P. Let P, be another x-y geodesic in G.
Let z be avertex in P; such that yz € V(C,,). LetS = {y,z}. Then S is a vertex strong geodetic set of G so that sg,(C,) =
2.

Next assume that n is odd. It is easily verified that sg, (C,) = 2. Let y and z be the two antipodal vertices of x.
Then S; = {y, z} is a vertex strong geodetic set of G so that sg,(C,) = 2.

| |

Corollary 2.10. (i) Let K; ,_; be a star. Then ng(K1,n) =n— 2 orn — 1 according as x is an end or non-end vertex,
wheren > 2.
(ii) Let G = K,, (n = 2) be a complete graph. Then sg,(G) =n—1forx € G.

Theorem 2.11. For any vertex x in G, 1 < sg,(G) < n—1.

Proof. It is clear from the definition of the sg,-set that sg,(G) = 1. Also since the vertex x does not belong to the sg,-
set it follows that sg,.(G) < n—1. ]

Remark 2.12. The bounds for sg, (G) in Theorem 2.11 are sharp. For an even cycle C,,,

5g,(Cyy) = 2 for any vertex x in C,,. Also for any non-trivial path B,, sg,(B,) = 1.

For any end vertex x in B,. For the complete graph K,,, sg, (K,,) = n — 1 for every vertex x in K,,.

Theorem 2.13. For any integers a, suchthat 1 < a < n — 1, there is a minimal with respect to graph G of order n and a
vertex x such that sg, (G) = a.

Proof. Ifa=n—-1o0rn-2, G = K;,_4 then the theorem follows from Corollary 2.10 by using ¢ = K;,,_,. For 1 <
a <n—3,thetree T in Figure 2.2 is provided forn = k + a vertices and it follows from Corollary 2.7 that sg,.(T) = a,

where x is any non-end vertex of T. As the graph is a tree, it is minimal with respect to edges. [ |
Up
Uy
o ———o .
vl vz v3 vk vk+1 .
G
Figure 2.2
Ug—1

Theorem 2.14. For any graph G, sg,(G) =n—1ifandonly if degx =n — 1.
Proof. Let sg,.(G) = n — 1. Assume that degx < n — 1. Then there is a vertex u in G, such that ux ¢ E(G). Since G is
connected, there is geodesic from x to u say P with length at least 2. By Note 2.3, x and the internal vertices of n do not
belong to the sg,.-set and hence sg,.(G) < n — 2, which is a contradiction.

Conversely, if degx = n — 1, then all other vertices of G are close to x so the sg,-set is made up of all these
vertices. Therefore, sg,(G) =n — 1. ]

Theorem 2.15. Let G be a connected graph. For avertex x in G, sg,(G) = 1ifandonly if x isan end vertex of P, G = B,.
Proof. Let x be an end vertex of P. Then by Corollary 2.8, G = B,. Conversely, let sg,(G) = 1. Then by Corollary
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2.8,5g,(G) = 1 vx € V. Then there exists a vertex y such that every vertex of G is on a diameteral path joining x and y.
Let P: x, xq, X1, X2, ..., X, =y be the fixed x-y geodesic. We prove that G = B,, Suppose not the case. Then there exists
z € V\V(B,). Then z & I[P], which is a contradiction. Therefore G = P,. [ ]

Theorem 2.16. Let K, 5 (r,s = 2) be a complete bipartite graph with bipartition
(X,Y). Then sg,(K; ) is s or s — 1 according as x is in X or x isin Y.

Proof. Case (i) x € X.

Without loss of generality, let x = x;. Since d(x,y) = 2 foreveryy € X — {x}, wefix P;: x,y;, x4, 1 <i<r—1)and
S0 sg,(G) =r—1. Let S = {x;,x3,...,x,}. Then the vertices y,, ¥,44, ..., ¥s does not lie on any x —x; geodesic
(1 <i <r—1).Hence it follows that S; = {y,, yy41, ..., Y5} IS & subset of every vertex strong geodetic set of G and so
sg,(G) =zr—1+ (s —(r— 1)) =s. LetS, =S US,;. Then S, is a vertex strong geodetic set of G so that sg, (G) = s.
Case (i) x €Y.

Without loss of generality, let x = y,. Since d(x,y) = 2 foreveryy € Y — {x}, we fix P;: x,y;, x;4, (1 <i<s—1)and
S0 5g,(G) = s —1.LetS = {y,,¥s, ..., ¥s}. Then S is a vertex strong geodetic set of G so that sg,(G) = s — 1. ]

Theorem 2.17. For the wheel W,, = K, + C,_, (n =5),sg,(W,) =n—1orn—3accordingasxis K, orxisinC,_;.
Proof. Let V(K) =y and V(Cph_1) = {v1, vy, e, Vpo1 ) If x € V(Ky). Then by
Theorem 2.14, sg,,(W;,) = n — 1. Let x € V(C,._1). Without loss of generality, x = v;. Fix P: vy, x, v,. Since d(G) = 2.
S = {us, uy, ..., u,_,} is the set of antipodal vertices of x. Then by Observation 2.5 (ii), S is a subset of every vertex
strong geodetic set of G and so sg,(G) =n — 4. Since y ¢ I,[S], S is not a vertex strong geodetic set of G and so
5g,(G) =n—3.LetS; =S U{y}. ThenS, is a vertex strong geodetic set of G so that sg,(G) = n—3. =

Theorem 2.18. For the fan graph ¢ = K; + P,_; (n=5)

n—1 ifxeV(Ky)
$9x(6) = {n —3 ifx €EV(Py,)
Proof. Let V(K;) = y and V(P,_;) = {v1, V3, .., Vn1 }-
Case (i) Let x = y, Fix P: vy, x,v,. Let S = {v;,v,, ..., v, }. Then S is a set of all eccentric vertices for x. Observation 2.5
(if) S is a subset of every vertex strong geodetic set of G and so sg,(G) = n — 1. Since S is a sg,-set of G we have
5g,(G) =n—1. Letx € V(P,_,). Let x = v;. Then S = {v3,v,, ..., v,_1} are eccentric vertices of G. By Observation
2.5(ii) S is a subset of every vertex strong geodetic set of G so that sg,(G) = n — 3. Since S is a sg,-set of G, we have
5g,(G) =2n—3.
If x = v,,_, by the similar way we can prove that sg,(G) = n — 3. Let x € {v,, vs, ..., v,_,}. Without loss of generality
let us assume that x = v,. Then {v,,v,,_;} is aset of extreme vertices of G. By Observation 2.5 (i), {v;, v,,_1} is a subset
of every sg,-set of G. {v,, vs, ..., v,_5} is a set of eccentric vertices of v,. Then {v,,vs,...,v,,_,} is asubset of every
vertex strong geodetic set of G and s0 sg,(G) = n— 3. Let S’ = {v,, v, Vs, ..., V3, Vn—q}. Then S’ is a sg,-set of G
so that sg,(G) =n— 3.
[ ]
Theorem 2.19. Let G be a connected graph with k cut vertices. Then every vertex of G is either a cut vertex or an extreme
vertex if and only if sg,(G) =n — korn—k — 1 for any vertex x in G.
Proof. Let G be a connected graph in which each vertex falls into one of two categories: a cut vertex or an extreme vertex
given that x is not a member of the sg,-set of G. Observation 2.5 (i) states that sg, (G) = n — k orn — k — 1 depending
on whether x is a cut vertex or an extreme vertex.
Conversely, suppose that sg,(G) =n — k orn — k — 1 for any vertex x in G.
Suppose there is a vertex x in G which is neither a cut vertex nor an extreme vertex. Since x is not an extreme vertex
N (x) does not induce a complete subgraph and hence there exist u and v in N(x) such that d (u, v) = 2. Also, since x is
not a cut vertex of G, G — {x} is connected and hence there exists a u — v geodesic say P:u, uq, Uy, ..., Uy, v in G — {x}.
Then P U {v, x, u} is a shortest cycle, say C, that contains both the vertices u and v with length at least 4 in G.
Case 1. Suppose either u or v is not a cut vertex of G. Assume that u is not a cut vertex of G. It is obvious that x is on a
u — v geodesic, hence u and x are not part of the sg,.-set. Therefore according to Theorem 2.11, sg,(G) <n —k — 2,
which is a contradiction to the assumption.
Case 2. When u and v are both cut vertices of G. According to Theorem 1.1, there is a division of the set of vertices V —
{v} into subsets U and W such that the vertex v is on every u; — w; path for vertices u; € U and w; € W. Without loss
of generality, assume that x € U. Let y be vertex in W with maximum distance from v in W. By choice of y, the vertex
y is not a cut vertex of G given that cycle C’s order is at least 4, the vertices x and y do not belong to the sg,-set and
hence by Theorem 2.11 sg,(G) < n — k — 2, which is a contradiction to the assumption. Hence every vertex of G is
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either a cutvertex or an extreme vertex. [

Corollary 2.20. Let G be a connected block graph with number of cut vertices k. Then for any vertex in G, sg,(G) =
n—korn—k—1.
Proof. Let G be a connected block graph. Then each G vertex is either cut or an extreme vertex and hence by Theorem
2.18,s9,(G) =n—korn—k — 1 forany vertex x in G.

[
Theorem 2.21. If G is a connected of order n and diameter d, then sg,.(G) < n —d + 1 for any vertex x in G.

Proof. For each vertex x in G then sg,(G) =n—1=n—-d if G = K,. So G # K,,. Let u and v be two vertices of G
such that d(u,v) =d and let u=vgy,vy,..,v4 =v be a u-v geodesic of length d. Now let S =V (G) —
{v1i, Vg, e, Vg_1} Ifx =v; (1< i <d—1), then clearly S is an x-vertex strong geodetic set of G so that sg,(G) <
IS|=n—d+ 1. Ifx=v; (i =0,d), then S — {x} is a x-vertex strong geodetic set of G so that sg,(G) < |S|—1=
n—d.

Letx #v; (0 <i<d). LetP and Q be x-v, and x-v,; geodesic respectively. Let y be the last vertex common
to both P and Q. Let P; be the y-v, geodesic on P and let Q, be the y-v,; geodesic on Q. Let T = (V(G) —
[V(P) UV(Q] U {vy, vg}. Thenitisclear that T is a x-vertex strong geodetic set of G and so.

ng(G) =n- [d(y' Uo) + d(}’» vd) + 1] +2

< n—[d(vy,vyq) + 1] + 2, by triangle inequality
=n—-d+1
Thus sg,(G) < n—d + 1 forany vertex x in G. ]

Theorem 2.22. For every non-trivial tree T. Let sg,(T) =n—d orn—d + 1 for any vertex x in T if and only if T is
caterpillar.

Proof. Let T be any non-trivial tree. Let P: u = vy, v4, ..., vy = v be a diametral path. Let k be the number of end vertices
of T and [ be the number of internal vertices of T other than vy, v4, ..., v4_;. Thend — 1 4+ k + k = p. By Corollary 2.7,
5g9,(T) =k or k —1 for any vertex x in T and so sg,(T) =p—d — 1+ 1or p—d —1 for any vertex x in T. Hence
5g,(G) =n—d+ 1orn—d forany vertex x in T if and only if [ = 0, if and only if all the internal vertices of T lie on
the diametral path P, if and only if T is caterpillar. [

Theorem 2.23. For positive integers r,d and [ = 2 with r < d < 2r, there exists a connected graph G with radG = r,
diamG = d and sg,(G) = [ for some vertex x in G.
Proof. If r=1,thend =1o0r 2. If d =1, let G = K;,,. Then by Corollary 2.20, sg,(G) = [ for any vertex x in G. If
d = 2, let G = Ky ;. Then by Corollary 2.20, sg,.(G) = [ for the cut vertex x in G. Now let r > 2. We construct a graph
G with the desired properties as follows.

Case 1. Supposer = d.Forl = 2. LetG = Cy.,1.Thenr = d and sg,(G) = 2 for any vertex x in G. Now let [ > 3.
Let Cy,: uq, uy, ..., Uy, Uy be acycle of order 2r. Let G be the graph obtained by adding the new vertices x;, x5, ..., X;_1
and joining each x; (1 < i < I) with u, and u, of C,,. The graph G is shown in Figure 2.3.

Uzr Uzr—1

Uy

X1-1 Cor :

G
Figure 2.3 Us Uy

It is easily verified that the eccentricity of each vertex of G is r so that radG = diamG = r. Fix P:
X1, Ug, Uy, Uz v, Uppq. LEE W ={X1, x5, ..., x;,_1} be the set of all extreme vertices of G and let x = u,,,. Then by
Observation 2.5 (i) W is a subset of every vertex strong geodetic set of G and so sg,(G) =1 — 1. Since W is not a
vertex strong geodetic set of G, sg,(G) = l.LetS = W U {u,,,}. Then W is a vertex strong geodetic set of G, sg,(G) =
L.
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Case 2. Suppose r<d<2r. FiX P Uz, Ug_r_q1, Uz Uy, V1, Vg ey Vppq. Let Cyrivy,
Uy, .., Uyy, U be a cycle of order 2r and let Py_, 1 : ug, Uq, Uy, ..., Ug_, e @ path of order d—r + 1. Let H be the graph
obtained from C,, and P;_,.,; by identifying v; in C,, and uy in Py_,.,,. If 1= 2,thenletG = H let x = v, ;. Then
S={v,uy_,} isasg,setof Gsothatl=2. If [ >3, then we add (I — 2) new vertices wy,w,, ..., w;_, to H by
joining each vertices w; (1 < i < - 2) to the vertex u,_,_; and obtain the graph G of Figure 2.4. Now radG =r
and diamG = d.LetW = {w;,w,, ...,w;_,, u,_,} be the set of end vertices of G and let x = v,,,. Then by Observation
2.5 (i) W is a subset of every vertex strong geodetic set of G and so sg,(G) = [ — 1. Since W is not a vertex strong
geodetic set of G, sg,(G) = L.

LetS, = W U {v,,,}. Then W is a vertex strong geodetic set of G, sg,(G) =1. m

Ur+2 Var
Ur+1 Uq Uy
Cor e
V1 # Ug
e e y
vy 2
G
Fiaure 2.4

Theorem 2.24. For any vertex x in G, sg(G) < sg,(G) + 1.
Proof. Let x be any vertex of G and let S, be a sg,-set of G lies on an x — y geodesic for some y in S,. Thus S, U {x}is
a vertex strong geodetic set of G. Since sg,(G) is the minimum cardinality of a vertex strong geodetic set, it follows that
5g(G) < sg,(G) + 1. [
Theorem 2.25. For every pair of integers a and b with 1 < a < b, there exists a connected graph G such that g, (G) =
a and sg, (G) = b for some x € V(G).
Proof. Let P:x,y,w,z be a path on three vertices. Let G be the graph obtained from P by adding the new vertices
24, Z9, s Zg—1, V1, Vg, ., Up—q @Nd introducing the edges zz; (1 < i < a),zv; (1 <i < b—a)andyy; (1 <
i < b—a). Thegraph G isshown in Figure 2.5. Let x = y.

First we prove that g,(G) = a. Let Z = {z,,2,, ...,z,} be the end vertices of G. Then by Theorem 1.1
(i), Z is a subset of every g,-set of G and so g,(G) = a. Since Z isa g,-set of G, g, (G) = a.

Next we prove that sg, (G) = b. We fix the geodesic P: x,w, z, z; By Observation 2.5 (i), Z is a subset of every
sg.-set of G. It is easily observed that every sg,- set of G containseach v; (1 < i < b—a) and so sg,(G) = a+
b—a=b.LetS=ZU{v,,v,,..,0_g}. Then S is a sg,-setof G sothat sg,(G) = b. ]

w

G
Figure 2.5

Ubp-a
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3. Conclusions

In this article we explore the concept of the strong geodetic number of a graph. We extend this concept to some other
distance related parameters in graphs.
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