The Vertex Strong Geodetic Number of a Graph

C. Saritha ${ }^{1 *}$ and T. Muthu Nesa Beula ${ }^{2}$

${ }^{1 *}$ Register Number 20123182092003, Research Scholar, Department of Mathematics, Women's Christian College, Nagercoil - 629 001, Manonmaniam Sundaranar University, Abishekapatti, Tirunelveli-627 012, Tamil Nadu, India. email: saritha.c2012@ gmail.com
${ }^{2}$ Assistant Professor, Department of Mathematics, Women's Christian College, Nagercoil - 629 001, Manonmaniam Sundaranar University, Abishekapatti, Tirunelveli-627 012, Tamil Nadu, India. email: tmnbeula@gmail.com

Abstract

Let x be a vertex of G and $S \subseteq V-\{x\}$. Then for each vertex $y \in S, x \neq y$. Let $\tilde{g}_{x}[y]$ be a selected fixed shortest $x-y$ path. Then we set $\tilde{I}_{x}[S]=\left\{\tilde{g}_{x}(y): y \in S\right\}$ and let $V\left(\tilde{I}_{x}[S]\right)=\bigcup_{p \in \tilde{I}_{x}[S]}^{V}(P)$. If $V\left(\tilde{I}_{x}[S]\right)=V$ for some $\tilde{I}_{x}[S]$ then the set S is called a vertex strong geodetic set of G. The minimum cardinality of a vertex strong geodetic set of G is called the vertex strong geodetic number of G and is denoted by $s g_{x}(G)$. Some of the standard graphs are determined. Necessary conditions for $s g_{x}(G)$ to be $n-1$ is given for some vertex x in G. It is shown for every pair of integers a and b with $2 \leq a \leq b$, there exists a connected graph G such that $\operatorname{sg}(G)=b+2$ and $s g_{x}(G)=a+b+1$ for some x in G.

Keywords: strong geodetic number, vertex strong geodetic number, geodetic number.

1. Introduction

By a graph $G=(V, E)$, we mean a finite, undirected connected graph without loops or multiple edges. The order and size of G are denoted by n and m respectively. For basic graph theoretic terminology, we refer to [1]. Two vertices u and v are said to be adjacent if $u v$ is an edge of G. Two edges of G are said to be adjacent if they have a common vertex. The distance $d(u, v)$ between two vertices u and v in a connected graph G is the length of a shortest $u-v$ path in G.

An $u-v$ path of length $d(u, v)$ is called an $u-v$ geodesic. An $x-y$ path of length $d(x, y)$ is called geodesic. A vertex v is said to lie on a geodesic P if v is an internal vertex of P. The closed interval $I[x, y]$ consists of x, y and all vertices lying on some $x-y$ geodesic of G and for a non-empty set $S \subseteq V(G), I[S]=\cup_{x, y \in S} I[x, y]$.

A set $S \subseteq V(G)$ in a connected graph G is a geodetic set of G if $I[S]=V(G)$. The geodetic number of G, denoted by $g(G)$, is the minimum cardinality of a geodetic set of G. The geodetic concept were studied in [1,3,4]. Let $S \subset V(G)$ and $x \in V$ such that $x \notin S$. Let $I_{x}[y]$ be the set of all vertices that lies in $x-y$ geodesic including x and y, where ${ }^{`} y \in$ S and $I_{x}[S]=\bigcup_{y \in S} I_{x}[y]$. Then S is said to be an x-geodetic set of G, if $I_{x}[S]=V$. The x-geodetic concept were studied in [10]. The following theorem is used in sequel.

Theorem 1.1 [10] Every extreme vertex of G other than the vertex x (whether x is extreme or not) belongs to every x geodetic set for any vertex x in G

2.The Vertex Strong Geodetic Number of a Graph

Definition 2.1. Let x be a vertex of G and $S \subseteq V-\{x\}$. Then for each vertex y $\in S$, $x \neq y$.

Let $\tilde{g}_{x}[y]$ be a selected fixed shortest $x-y$ path. Then we set $\tilde{I}_{x}[S]=\left\{\tilde{g}_{x}(y): y \in S\right\}$ and let $V\left(\tilde{I}_{x}[S]\right)=\underset{p \in \tilde{I}_{x}[S]}{\cup}(P)$.
If $V\left(\tilde{I}_{x}[S]\right)=V$ for some $\tilde{I}_{x}[S]$ then the set S is called a vertex strong geodetic set of G. The minimum cardinality of a vertex strong geodetic set of G is called the vertex strong geodetic number of G and is denoted by $s g_{x}(G)$.

Example 2.2. For the graph G given in Figure 2.1, $s g_{x}$-sets and $s g_{x}(G)$ for each vertex x is given in the following Table 2.1.

Figure 2.1
Table 2.1

Vertex	$s g_{x}$-sets	$s g_{x}(G)$
v_{1}	$\left\{v_{5}, v_{6}\right\}$	2
v_{2}	$\left\{v_{1}, v_{5}, v_{6}\right\}$	3
v_{3}	$\left\{v_{1}, v_{5}, v_{7}\right\}$	3
v_{4}	$\left\{v_{1}, v_{5}, v_{7}\right\}$	3
v_{5}	$\left\{v_{1}, v_{7}\right\}$	2
v_{6}	$\left\{v_{1}, v_{5}, v_{7}\right\}$	3

Note 2.3. Every vertex of an $x-y$ geodesic in x - vertex strong geodetic the vertex y. Since by definition a $s g_{x}$-sets is minimum, the vertex x and also the internal vertices of an $x-y$ geodesic do not belong to a $s g_{x}$-set.

Theorem 2.4. For any vertex x in $G, s g_{x}$-set is unique and it is contained in every x - vertex strong geodetic set of G.
Proof. Suppose there are two $s g_{x}$-sets say S_{1} and S_{2}. Let u be a vertex of G such that $u \in S_{1}$ and $u \notin S_{2}$. Since S_{2} is a $s g_{x}$-set, $\left|S_{2}\right|=\left|S_{1}\right|$ and hence there exists a vertex $v \neq u$ in G such that $v \in S_{2}$ and $v \notin S_{1}$. Since S_{1} is a $s g_{x}$-set and $v \notin S_{1}$, there exists a vertex $w \in S_{1}$, such that $v \in I[x, w]$.
Case 1. Suppose $w \in S_{2}$. Since v is an internal vertex of an $x-w$ geodesic and S_{2} is a $s g_{x}$-set, v is not in S_{2}, which is a contradiction to $v \in S_{2}$ \qquad (1)

Case 2. Suppose $w \notin S_{2}$. Since S_{2} is a $s g_{x}$-set, there exists an element $y \in S_{2}$ such that w lies an $x-y$ geodesic say P. From (1), v lies on an $x-w$ geodesic say Q. Then the union of the geodesic Q from x to w and the $w-y$ section of the geodesic P is an $x-y$ geodesic so that $v \in I[x, y]$. Thus v is an internal vertex of an $x-y$ geodesic. Since S_{2} is a $s g_{x}$-set, v is not in S_{2}, Which is a contradiction to $v \notin S_{2}$.

Now claim that $s g_{x}$-set is contained in every vertex strong geodetic set of x of G. Let y be an element of the $s g_{x^{-}}$ set. say S of G. Since S is minimum, $y \notin I_{x}[z]$ for any other vertex z in G. If there exists vertex strong geodetic set of x of G. say S^{\prime}, such that $y \notin S^{\prime}$, then y lies on an $x-v$ geodesic for some $v \in S^{\prime}$ and hence $y \in I_{x}[v]$, which is a contradiction.
Observation 2.5. Let G be a connected graph
(i) Every simplicial vertex of G other than the vertex x (whether x is simplicial or not) belongs to the $s g_{x}$-set for any vertex x in G.
(ii) For any vertex x, eccentric vertices of x belong to the $s g_{x}$-set.
(iii) No cut vertex of G belongs to any $s g_{x}$-set.

Note 2.6. Even if x is a simplicial vertex of G, x does not belong to the $s g_{x}$-set.
Corollary 2.7. Let T be a tree with number of end vertices k. Then $s g_{x}(T)=k-1$ or k according as x is an end or nonend vertex of T.
Proof. This follows from Observation 2.4.
Corollary 2.8. Let P_{n} be a non-trivial path. Then $s g_{x}\left(P_{n}\right)=1$ or 2 according as x is an end or non-end vertex.
Theorem 2.9. For the cycle $G=C_{n}(n \geq 4)$, then $s g_{x}\left(C_{n}\right)=2$ for every $x \in G$.
Proof. Let $V\left(C_{n}\right)=\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$. Let x be a vertex of G.
Let n be even. Let y be the antipodal vertex of x. Then $\{y\}$ is not a vertex strong geodetic set of G. Fix the $x-y$ geodesic P. Let $\quad P_{1} \quad$ be another $\quad x-y \quad$ geodesic \quad in $\quad G$. Let z be a vertex in P_{1} such that $y z \in V\left(C_{n}\right)$. Let $S=\{y, z\}$. Then S is a vertex strong geodetic set of G so that $s g_{x}\left(C_{n}\right)=$ 2.

Next assume that n is odd. It is easily verified that $s g_{x}\left(C_{n}\right) \geq 2$. Let y and z be the two antipodal vertices of x. Then $S_{1}=\{y, z\}$ is a vertex strong geodetic set of G so that $s g_{x}\left(C_{n}\right)=2$.

Corollary 2.10. (i) Let $K_{1, n-1}$ be a star. Then $s g_{x}\left(K_{1, n}\right)=n-2$ or $n-1$ according as x is an end or non-end vertex, where $n \geq 2$.
(ii) Let $G=K_{n}(n \geq 2)$ be a complete graph. Then $s g_{x}(G)=n-1$ for $x \in G$.

Theorem 2.11. For any vertex x in $G, 1 \leq s g_{x}(G) \leq n-1$.
Proof. It is clear from the definition of the $s g_{x}$-set that $s g_{x}(G) \geq 1$. Also since the vertex x does not belong to the $s g_{x}$ set it follows that $s g_{x}(G) \leq n-1$.
Remark 2.12. The bounds for $s g_{x}(G)$ in Theorem 2.11 are sharp. For an even cycle $C_{2 n}$,
$s g_{x}\left(C_{2 n}\right)=2$ for any vertex x in $C_{2 n}$. Also for any non-trivial path $P_{n}, s g_{x}\left(P_{n}\right)=1$.
For any end vertex x in P_{n}. For the complete graph $K_{n}, s g_{x}\left(K_{n}\right)=n-1$ for every vertex x in K_{n}.
Theorem 2.13. For any integers a, such that $1 \leq a \leq n-1$, there is a minimal with respect to graph G of order n and a vertex x such that $s g_{x}(G)=a$.
Proof. If $a=n-1$ or $n-2, G=K_{1, n-1}$ then the theorem follows from Corollary 2.10 by using $G=K_{1, n-1}$. For $1 \leq$ $a \leq n-3$, the tree T in Figure 2.2 is provided forn $=k+a$ vertices and it follows from Corollary 2.7 that $s g_{x}(T)=a$, where x is any non-end vertex of T. As the graph is a tree, it is minimal with respect to edges.

Theorem 2.14. For any graph $G, s g_{x}(G)=n-1$ if and only if $\operatorname{deg} x=n-1$.
Proof. Let $s g_{x}(G)=n-1$. Assume that $\operatorname{deg} x<n-1$. Then there is a vertex u in G, such that $u x \notin E(G)$. Since G is connected, there is geodesic from x to u say P with length at least 2 . By Note $2.3, x$ and the internal vertices of n do not belong to the $s g_{x}$-set and hence $s g_{x}(G) \leq n-2$, which is a contradiction.

Conversely, if $\operatorname{deg} x=n-1$, then all other vertices of G are close to x so the $s g_{x}$-set is made up of all these vertices. Therefore, $s g_{x}(G)=n-1$.

Theorem 2.15. Let G be a connected graph. For a vertex x in $G, s g_{x}(G)=1$ if and only if x is an end vertex of $P, G=P_{n}$. Proof. Let x be an end vertex of P. Then by Corollary $2.8, G=P_{n}$. Conversely, let $s g_{x}(G)=1$. Then by Corollary
2.8, $s g_{x}(G)=1 \forall x \in V$. Then there exists a vertex y such that every vertex of G is on a diameteral path joining x and y. Let $P: x, x_{0}, x_{1}, x_{2}, \ldots, x_{n}=y$ be the fixed $x-y$ geodesic. We prove that $G=P_{n}$, Suppose not the case. Then there exists $z \in V \backslash V\left(P_{n}\right)$. Then $z \notin \tilde{I}_{x}[P]$, which is a contradiction. Therefore $G=P_{n}$.

Theorem 2.16. Let $K_{r, s}(r, s \geq 2)$ be a complete bipartite graph with bipartition
(X, Y). Then $s g_{x}\left(K_{r, s}\right)$ is s or $s-1$ according as x is in X or x is in Y.
Proof. Case (i) $x \in X$.
Without loss of generality, let $x=x_{1}$. Since $d(x, y)=2$ for every $y \in X-\{x\}$, we fix $P_{i}: x, y_{i}, x_{i+1}(1 \leq i \leq r-1)$ and so $s g_{x}(G) \geq r-1$. Let $S=\left\{x_{2}, x_{3}, \ldots, x_{r}\right\}$. Then the vertices $y_{r}, y_{r+1}, \ldots, y_{s}$ does not lie on any $x-x_{i}$ geodesic ($1 \leq i \leq r-1$). Hence it follows that $S_{1}=\left\{y_{r}, y_{r+1}, \ldots, y_{s}\right\}$ is a subset of every vertex strong geodetic set of G and so $s g_{x}(G) \geq r-1+(s-(r-1))=s$. Let $S_{2}=S \cup S_{1}$. Then S_{2} is a vertex strong geodetic set of G so that $s g_{x}(G)=s$. Case (i) $x \in Y$.
Without loss of generality, let $x=y_{1}$. Since $d(x, y)=2$ for every $y \in Y-\{x\}$, we fix $P_{i}: x, y_{i}, x_{i+1}(1 \leq i \leq s-1)$ and so $s g_{x}(G) \geq s-1$. Let $S=\left\{y_{2}, y_{3}, \ldots, y_{s}\right\}$. Then S is a vertex strong geodetic set of G so that $s g_{x}(G)=s-1$.

Theorem 2.17. For the wheel $W_{n}=K_{1}+C_{n-1}(n \geq 5), s g_{x}\left(W_{n}\right)=n-1$ or $n-3$ according as x is K_{1} or x is in C_{n-1}. Proof. Let $V\left(K_{1}\right)=y$ and $V\left(C_{n-1}\right)=\left\{v_{1}, v_{2}, \ldots, v_{n-1}\right\}$. If $x \in V\left(K_{1}\right)$. Then by Theorem 2.14, $s g_{x}\left(W_{n}\right)=n-1$. Let $x \in V\left(C_{n-1}\right)$. Without loss of generality, $x=v_{1}$. Fix $P: v_{1}, x, v_{2}$. Since $d(G)=2$. $S=\left\{u_{3}, u_{4}, \ldots, u_{n-2}\right\}$ is the set of antipodal vertices of x. Then by Observation 2.5 (ii), S is a subset of every vertex strong geodetic set of G and so $s g_{x}(G) \geq n-4$. Since $y \notin \tilde{I}_{x}[S], S$ is not a vertex strong geodetic set of G and so $s g_{x}(G) \geq n-3$. Let $S_{1}=S \cup\{y\}$. Then S_{1} is a vertex strong geodetic set of G so that $s g_{x}(G)=n-3$.

Theorem 2.18. For the fan graph $G=K_{1}+P_{n-1} \quad(n \geq 5)$
$s g_{x}(G)=\left\{\begin{array}{l}n-1 \quad \text { if } x \in V\left(K_{1}\right) \\ n-3 \text { if } x \in V\left(P_{n-1}\right)\end{array}\right.$
Proof. Let $V\left(K_{1}\right)=y$ and $V\left(P_{n-1}\right)=\left\{v_{1}, v_{2}, \ldots, v_{n-1}\right\}$.
Case (i) Let $x=y$, Fix $P: v_{1}, x, v_{2}$. Let $S=\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$. Then S is a set of all eccentric vertices for x. Observation 2.5 (ii) S is a subset of every vertex strong geodetic set of G and so $s g_{x}(G) \geq n-1$. Since S is a $s g_{x}$-set of G we have $s g_{x}(G)=n-1$. Let $x \in V\left(P_{n-1}\right)$. Let $x=v_{1}$. Then $S=\left\{v_{3}, v_{4}, \ldots, v_{n-1}\right\}$ are eccentric vertices of G. By Observation 2.5(ii) S is a subset of every vertex strong geodetic set of G so that $s g_{x}(G) \geq n-3$. Since S is a $s g_{x}$-set of G, we have $s g_{x}(G) \geq n-3$.
If $x=v_{n-1}$ by the similar way we can prove that $s g_{x}(G)=n-3$. Let $x \in\left\{v_{2}, v_{3}, \ldots, v_{n-2}\right\}$. Without loss of generality let us assume that $x=v_{2}$. Then $\left\{v_{1}, v_{n-1}\right\}$ is a set of extreme vertices of G. By Observation 2.5 (i), $\left\{v_{1}, v_{n-1}\right\}$ is a subset of every $s g_{x}$-set of $G .\left\{v_{4}, v_{5}, \ldots, v_{n-2}\right\}$ is a set of eccentric vertices of v_{2}. Then $\left\{v_{4}, v_{5}, \ldots, v_{n-2}\right\}$ is a subset of every vertex strong geodetic set of G and so $s g_{x}(G) \geq n-3$. Let $S^{\prime}=\left\{v_{1}, v_{4}, v_{5}, \ldots, v_{n-2}, v_{n-1}\right\}$. Then S^{\prime} is a $s g_{x}$-set of G so that $s g_{x}(G)=n-3$.

Theorem 2.19. Let G be a connected graph with k cut vertices. Then every vertex of G is either a cut vertex or an extreme vertex if and only if $s g_{x}(G)=n-k$ or $n-k-1$ for any vertex x in G.
Proof. Let G be a connected graph in which each vertex falls into one of two categories: a cut vertex or an extreme vertex given that x is not a member of the $s g_{x}$-set of G. Observation 2.5 (i) states that $s g_{x}(G)=n-k$ or $n-k-1$ depending on whether x is a cut vertex or an extreme vertex.
Conversely, suppose that $s g_{x}(G)=n-k$ or $n-k-1$ for any vertex x in G.
Suppose there is a vertex x in G which is neither a cut vertex nor an extreme vertex. Since x is not an extreme vertex $N(x)$ does not induce a complete subgraph and hence there exist u and v in $N(x)$ such that $d(u, v)=2$. Also, since x is not a cut vertex of $G, G-\{x\}$ is connected and hence there exists a $u-v$ geodesic say $P: u, u_{1}, u_{2}, \ldots, u_{n}, v$ in $G-\{x\}$. Then $P \cup\{v, x, u\}$ is a shortest cycle, say C, that contains both the vertices u and v with length at least 4 in G.
Case 1. Suppose either u or v is not a cut vertex of G. Assume that u is not a cut vertex of G. It is obvious that x is on a $u-v$ geodesic, hence u and x are not part of the $s g_{x}$-set. Therefore according to Theorem 2.11, $s g_{x}(G) \leq n-k-2$, which is a contradiction to the assumption.
Case 2. When u and v are both cut vertices of G. According to Theorem 1.1, there is a division of the set of vertices V $\{v\}$ into subsets U and W such that the vertex v is on every $u_{1}-w_{1}$ path for vertices $u_{1} \in U$ and $w_{1} \in W$. Without loss of generality, assume that $x \in U$. Let y be vertex in W with maximum distance from v in W. By choice of y, the vertex y is not a cut vertex of G given that cycle C^{\prime} s order is at least 4 , the vertices x and y do not belong to the $s g_{x}$-set and hence by Theorem $2.11 s g_{x}(G) \leq n-k-2$, which is a contradiction to the assumption. Hence every vertex of G is
either a cutvertex or an extreme vertex.
Corollary 2.20. Let G be a connected block graph with number of cut vertices k. Then for any vertex in $G, s g_{x}(G)=$ $n-k$ or $n-k-1$.
Proof. Let G be a connected block graph. Then each G vertex is either cut or an extreme vertex and hence by Theorem 2.18, $s g_{x}(G)=n-k$ or $n-k-1$ for any vertex x in G.

Theorem 2.21. If G is a connected of order n and diameter d, then $s g_{x}(G) \leq n-d+1$ for any vertex x in G.
Proof. For each vertex x in G then $s g_{x}(G)=n-1=n-d$ if $G=K_{p}$. So $G \neq K_{p}$. Let u and v be two vertices of G such that $d(u, v)=d$ and let $u=v_{0}, v_{1}, \ldots, v_{d}=v$ be a $u-v$ geodesic of length d. Now let $S=V(G)-$ $\left\{v_{1}, v_{2}, \ldots, v_{d-1}\right\}$. If $x=v_{i}(1 \leq i \leq d-1)$, then clearly S is an x-vertex strong geodetic set of G so that $s g_{x}(G) \leq$ $|S|=n-d+1$. If $x=v_{i}(i=0, d)$, then $S-\{x\}$ is a x-vertex strong geodetic set of G so that $s g_{x}(G) \leq|S|-1=$ $n-d$.

Let $x \neq v_{i}(0 \leq i \leq d)$. Let P and Q be $x-v_{0}$ and $x-v_{d}$ geodesic respectively. Let y be the last vertex common to both P and Q. Let P_{1} be the $y-v_{0}$ geodesic on P and let Q_{1} be the $y-v_{d}$ geodesic on Q. Let $T=(V(G)-$ $\left[V\left(P_{1}\right) \cup V\left(Q_{1}\right)\right] \cup\left\{v_{0}, v_{d}\right\}$. Then it is clear that T is a x-vertex strong geodetic set of G and so.

$$
\begin{aligned}
s g_{x}(G) & \leq n-\left[d\left(y, v_{0}\right)+d\left(y, v_{d}\right)+1\right]+2 \\
& \leq n-\left[d\left(v_{0}, v_{d}\right)+1\right]+2, \text { by triangle inequality } \\
& =n-d+1
\end{aligned}
$$

Thus $s g_{x}(G) \leq n-d+1$ for any vertex x in G.
Theorem 2.22. For every non-trivial tree T. Let $s g_{x}(T)=n-d$ or $n-d+1$ for any vertex x in T if and only if T is caterpillar.
Proof. Let T be any non-trivial tree. Let $P: u=v_{0}, v_{1}, \ldots, v_{d}=v$ be a diametral path. Let k be the number of end vertices of T and l be the number of internal vertices of T other than $v_{0}, v_{1}, \ldots, v_{d-1}$. Then $d-1+k+k=p$. By Corollary 2.7, $s g_{x}(T)=k$ or $k-1$ for any vertex x in T and so $s g_{x}(T)=p-d-l+1$ or $p-d-l$ for any vertex x in T. Hence $s g_{x}(G)=n-d+1$ or $n-d$ for any vertex x in T if and only if $l=0$, if and only if all the internal vertices of T lie on the diametral path P, if and only if T is caterpillar.

Theorem 2.23. For positive integers r, d and $l \geq 2$ with $r \leq d \leq 2 r$, there exists a connected graph G with radG $=r$, $\operatorname{diam} G=d$ and $s g_{x}(G)=l$ for some vertex x in G.
Proof. If $r=1$, then $d=1$ or 2 . If $d=1$, let $G=K_{l+1}$. Then by Corollary $2.20, s g_{x}(G)=l$ for any vertex x in G. If $d=2$, let $G=K_{1, l}$. Then by Corollary 2.20, $s g_{x}(G)=l$ for the cut vertex x in G. Now let $r \geq 2$. We construct a graph G with the desired properties as follows.
Case 1. Suppose $r=d$. For $l=2$. Let $G=C_{2 r+1}$. Then $r=d$ and $s g_{x}(G)=2$ for any vertex x in G. Now let $l \geq 3$. Let $C_{2 r}: u_{1}, u_{2}, \ldots, u_{2 r}, u_{1}$ be a cycle of order $2 r$. Let G be the graph obtained by adding the new vertices $x_{1}, x_{2}, \ldots, x_{l-1}$ and joining each $x_{i}(1 \leq i \leq l)$ with u_{1} and u_{2} of $C_{2 r}$. The graph G is shown in Figure 2.3.

It is easily verified that the eccentricity of each vertex of G is r so that radG=diamG=r. Fix P: $x_{1}, u_{1}, u_{2}, u_{3} \ldots, u_{r+1}$. Let $W=\left\{x_{1}, x_{2}, \ldots, x_{l-1}\right\}$ be the set of all extreme vertices of G and let $x=u_{r+1}$. Then by Observation 2.5 (i) W is a subset of every vertex strong geodetic set of G and so $s g_{x}(G) \geq l-1$. Since W is not a vertex strong geodetic set of $G, s g_{x}(G) \geq l$. Let $S=W \cup\left\{u_{r+2}\right\}$. Then W is a vertex strong geodetic set of $G, s g_{x}(G)=$ l.

Case 2. Suppose $r<d \leq 2 r$. Fix $\quad \mathrm{P}: \quad u_{d-r}, u_{d-r-1}, \ldots u_{2}, u_{1}, v_{1}, v_{2} \ldots, v_{r+1}$. Let $C_{2 r}: v_{1}$, $v_{2}, \ldots, v_{2 r}, v_{1}$ be a cycle of order $2 r$ and let $P_{d-r+1}: u_{0}, u_{1}, u_{2}, \ldots, u_{d-r}$ be a path of order $d-r+1$. Let H be the graph obtained from $C_{2 r}$ and P_{d-r+1} by identifying v_{1} in $C_{2 r}$ and u_{0} in P_{d-r+1}. If $l=2$, then let $G=H$ let $x=v_{r+1}$. Then $S=\left\{v_{r}, u_{d-r}\right\}$ is a $s g_{x}$-set of G so that $l=2$. If $l \geq 3$, then we add $(l-2)$ new vertices $w_{1}, w_{2}, \ldots, w_{l-2}$ to H by joining each vertices $w_{i}(1 \leq i \leq l-2)$ to the vertex u_{d-r-1} and obtain the graph G of Figure 2.4. Now radG $=r$ and diam $G=d$. Let $W=\left\{w_{1}, w_{2}, \ldots, w_{l-2}, u_{d-r}\right\}$ be the set of end vertices of G and let $x=v_{r+1}$. Then by Observation 2.5 (i) W is a subset of every vertex strong geodetic set of G and so $s g_{x}(G) \geq l-1$. Since W is not a vertex strong geodetic set of $G, s g_{x}(G) \geq l$.
Let $S_{1}=W \cup\left\{v_{r+1}\right\}$. Then W is a vertex strong geodetic set of $G, s g_{x}(G)=l$.

Theorem 2.24. For any vertex x in $G, s g(G) \leq s g_{x}(G)+1$.
Proof. Let x be any vertex of G and let S_{x} be a $s g_{x}$-set of G lies on an $x-y$ geodesic for some y in S_{x}. Thus $S_{x} \cup\{x\}$ is a vertex strong geodetic set of G. Since $s g_{x}(G)$ is the minimum cardinality of a vertex strong geodetic set, it follows that $s g(G) \leq s g_{x}(G)+1$.
Theorem 2.25. For every pair of integers a and b with $1 \leq a \leq b$, there exists a connected graph G such that $g_{x}(G)=$ a and $s g_{x}(G)=b$ for some $x \in V(G)$.
Proof. Let $P: x, y, w, z$ be a path on three vertices. Let G be the graph obtained from P by adding the new vertices $z_{1}, z_{2}, \ldots, z_{a-1}, v_{1}, v_{2}, \ldots, v_{b-a}$ and introducing the edges $z z_{i}(1 \leq i \leq a), z v_{i}(1 \leq i \leq b-a)$ and $y v_{i}(1 \leq$ $i \leq b-a)$. The graph G is shown in Figure 2.5. Let $x=y$.

First we prove that $g_{x}(G)=a$. Let $Z=\left\{z_{1}, z_{2}, \ldots, z_{a}\right\}$ be the end vertices of G. Then by Theorem 1.1 (i), Z is a subset of every g_{x}-set of G and so $g_{x}(G) \geq a$. Since Z is a g_{x}-set of $G, g_{x}(G)=a$.

Next we prove that $s g_{x}(G)=b$. We fix the geodesic $P: x, w, z, z_{1}$ By Observation 2.5 (i), Z is a subset of every $s g_{x}$-set of G. It is easily observed that every $s g_{x}$ - set of G contains each $v_{i}(1 \leq i \leq b-a)$ and so $s g_{x}(G) \geq a+$ $b-a=b$. Let $S=Z \cup\left\{v_{1}, v_{2}, \ldots, v_{b-a}\right\}$. Then S is a $s g_{x}$-set of G so that $s g_{x}(G)=b$.

Figure 2.5

3. Conclusions

In this article we explore the concept of the strong geodetic number of a graph. We extend this concept to some other distance related parameters in graphs.

References

[1] F. Buckley and F. Harary, Distance in Graphs, Addison-Wesley, Redwood City, CA, 1990.
[2] L. G. Bino Infanta and D. Antony Xavier, Strong upper geodetic number of graphs, Communications in Mathematics and Applications 12(3), 2021, 737-748.
[3] G. Chartrand and P. Zhang, The forcing geodetic number of a graph, Discuss. Math. Graph Theory, 19, 1999, 45-58.
[4] G. Chartrand, F. Harary and P. Zhang, On the geodetic number of a graph, Networks, 39, 2002, 1-6.
[5] V. Gledel, V. Irsic, and S. Klavzar, Strong geodetic cores and cartesian product graphs, arXiv:1803.11423 [math.CO] (30 Mar 2018).
[6] Huifen Ge, Zao Wang-and Jinyu Zou Strong geodetic number in some networks, Journal of Mathematical Resarch11(2), 2019, 20-29.
[7] V. Irsic, Strong geodetic number of complete bipartite graphs and of graphs with specified diameter, Graphs and Combin. 34, 2018, 443-456.
[8] V. Irsic, and S. Klavzar, Strong geodetic problem on Cartesian products of graphs, RAIRO Oper. Res. 52, 2018, 205216.
[9] P. Manuel, S. Klavzar, A. Xavier, A. Arokiaraj, and E. Thomas, Strong edge geodetic problem in networks, Open Math. 15, 2017, 1225-1235.
[10] A. P. Santhakumaran and P. Titus, Vertex Geodomination in Graphs, Bulletin of Kerala Mathematics Association 2 (2), 2005, $45-57$.
[11] C.Saritha and T.Muthu Nesa Beula, The forcing strong geodetic number of a graph, proceedings of the International conference on Advances and Applications in Mathematical Sciences, 2022,76-80.

