The Vertex Strong Geodetic Number of a Graph

C. Saritha^{1*} and T. Muthu Nesa Beula²

^{1*}Register Number 20123182092003, Research Scholar, Department of Mathematics, Women's Christian College, Nagercoil - 629 001, Manonmaniam Sundaranar University, Abishekapatti, Tirunelveli-627 012, Tamil Nadu, India. email: <u>saritha.c2012@gmail.com</u>

²Assistant Professor, Department of Mathematics, Women's Christian College, Nagercoil - 629 001, Manonmaniam Sundaranar University, Abishekapatti, Tirunelveli-627 012, Tamil Nadu, India. email: <u>tmnbeula@gmail.com</u>

Abstract

Let *x* be a vertex of *G* and $S \subseteq V - \{x\}$. Then for each vertex $y \in S$, $x \neq y$. Let $\tilde{g}_x[y]$ be a selected fixed shortest *x*-*y* path. Then we set $\tilde{I}_x[S] = \{\tilde{g}_x(y) : y \in S\}$ and let $V(\tilde{I}_x[S]) = \bigcup V(P)$. If $V(\tilde{I}_x[S]) = V$ for some $\tilde{I}_x[S]$ then the set *S* is $p \in I_x[S]$

called a vertex strong geodetic set of G. The minimum cardinality of a vertex strong geodetic set of G is called the vertex strong geodetic number of G and is denoted by $sg_x(G)$. Some of the standard graphs are determined. Necessary conditions for $sg_x(G)$ to be n-1 is given for some vertex x in G. It is shown for every pair of integers a and b with $2 \le a \le b$, there exists a connected graph G such that sg(G) = b + 2 and $sg_x(G) = a + b + 1$ for some x in G.

Keywords: strong geodetic number, vertex strong geodetic number, geodetic number.

1. Introduction

By a graph G = (V, E), we mean a finite, undirected connected graph without loops or multiple edges. The *order* and *size* of *G* are denoted by *n* and *m* respectively. For basic graph theoretic terminology, we refer to [1]. Two vertices *u* and *v* are said to be *adjacent* if *uv* is an edge of *G*. Two edges of *G* are said to be adjacent if they have a common vertex. The *distance* d(u, v) between two vertices *u* and *v* in a connected graph *G* is the length of a shortest *u*-*v* path in *G*.

An u-v path of length d(u, v) is called an u-v geodesic. An x - y path of length d(x, y) is called geodesic. A vertex v is said to lie on a geodesic P if v is an internal vertex of P. The closed interval I[x, y] consists of x, y and all vertices lying on some x - y geodesic of G and for a non-empty set $S \subseteq V(G)$, $I[S] = \bigcup_{x,y \in S} I[x, y]$.

A set $S \subseteq V(G)$ in a connected graph *G* is a geodetic set of *G* if I[S] = V(G). The geodetic number of *G*, denoted by g(G), is the minimum cardinality of a geodetic set of *G*. The geodetic concept were studied in [1, 3, 4]. Let $S \subset V(G)$ and $x \in V$ such that $x \notin S$. Let $I_x[y]$ be the set of all vertices that lies in x-y geodesic including x and y, where $y \in S$ and $I_x[S] = \bigcup_{y \in S} I_x[y]$. Then S is said to be an x-geodetic set of G, if $I_x[S] = V$. The x-geodetic concept were studied in [10]. The following theorem is used in sequel.

Theorem 1.1 [10] Every extreme vertex of G other than the vertex x (whether x is extreme or not) belongs to every x-geodetic set for any vertex x in G

2. The Vertex Strong Geodetic Number of a Graph

Definition 2.1. Let x be a vertex of G and $S \subseteq V - \{x\}$. Then for each vertex $y \in S$, $x \neq y$.

Let $\tilde{g}_x[y]$ be a selected fixed shortest x-y path. Then we set $\tilde{I}_x[S] = \{\tilde{g}_x(y): y \in S\}$ and let $V(\tilde{I}_x[S]) = \bigcup_{\substack{y \in \tilde{I}_x[S] \\ p \in \tilde{I}_x[S]}} V(P)$.

If $V(\tilde{I}_x[S]) = V$ for some $\tilde{I}_x[S]$ then the set *S* is called a vertex strong geodetic set of *G*. The minimum cardinality of a vertex strong geodetic set of *G* is called the vertex strong geodetic number of *G* and is denoted by $sg_x(G)$.

Example 2.2. For the graph G given in Figure 2.1, sg_x -sets and $sg_x(G)$ for each vertex x is given in the following Table 2.1.

Table	2.1
Lanc	4.1

Vertex	sg_x -sets	$sg_x(G)$
<i>v</i> ₁	$\{v_5, v_6\}$	2
<i>v</i> ₂	$\{v_1, v_5, v_6\}$	3
<i>v</i> ₃	$\{v_1, v_5, v_7\}$	3
v_4	$\{v_1, v_5, v_7\}$	3
v_5	$\{v_1, v_7\}$	2
v_6	$\{v_1, v_5, v_7\}$	3

Note 2.3. Every vertex of an x-y geodesic in x- vertex strong geodetic the vertex y. Since by definition a sg_x -sets is minimum, the vertex x and also the internal vertices of an x-y geodesic do not belong to a sg_x -set.

Theorem 2.4. For any vertex x in G, sg_x -set is unique and it is contained in every x- vertex strong geodetic set of G. **Proof.** Suppose there are two sg_x -sets say S_1 and S_2 . Let u be a vertex of G such that $u \in S_1$ and $u \notin S_2$. Since S_2 is a sg_x -set, $|S_2| = |S_1|$ and hence there exists a vertex $v \neq u$ in G such that $v \in S_2$ and $v \notin S_1$. Since S_1 is a sg_x -set and $v \notin S_1$, there exists a vertex $w \in S_1$, such that $v \in I[x, w]$.

Case 1. Suppose $w \in S_2$. Since v is an internal vertex of an x-w geodesic and S_2 is a sg_x -set, v is not in S_2 , which is a contradiction to $v \in S_2$ _____(1)

Case 2. Suppose $w \notin S_2$. Since S_2 is a sg_x -set, there exists an element $y \in S_2$ such that w lies an x-y geodesic say P. From (1), v lies on an x-w geodesic say Q. Then the union of the geodesic Q from x to w and the w-y section of the geodesic P is an x-y geodesic so that $v \in I[x, y]$. Thus v is an internal vertex of an x-y geodesic. Since S_2 is a sg_x -set, v is not in S_2 , Which is a contradiction to $v \notin S_2$.

Now claim that sg_x -set is contained in every vertex strong geodetic set of x of G. Let y be an element of the sg_x -set. say S of G. Since S is minimum, $y \notin I_x[z]$ for any other vertex z in G. If there exists vertex strong geodetic set of x of G. say S', such that $y \notin S'$, then y lies on an x-v geodesic for some $v \in S'$ and hence $y \in I_x[v]$, which is a contradiction.

Observation 2.5. Let *G* be a connected graph

(i) Every simplicial vertex of G other than the vertex x (whether x is simplicial or not) belongs to the sg_x -set for any vertex x in G.

(ii) For any vertex x, eccentric vertices of x belong to the sg_x -set.

(iii) No cut vertex of G belongs to any sg_x -set.

Note 2.6. Even if x is a simplicial vertex of G, x does not belong to the sg_x -set.

Corollary 2.7. Let *T* be a tree with number of end vertices *k*. Then $sg_x(T) = k - 1$ or *k* according as *x* is an end or nonend vertex of *T*.

Proof. This follows from Observation 2.4.

Corollary 2.8. Let P_n be a non-trivial path. Then $sg_x(P_n) = 1$ or 2 according as x is an end or non-end vertex. **Theorem 2.9.** For the cycle $G = C_n (n \ge 4)$, then $sg_x(C_n) = 2$ for every $x \in G$.

Proof. Let $V(C_n) = \{v_1, v_2, \dots, v_n\}$. Let x be a vertex of G.

Let *n* be even. Let *y* be the antipodal vertex of *x*. Then $\{y\}$ is not a vertex strong geodetic set of *G*. Fix the x - y geodesic *P*. Let P_1 be another x - y geodesic in *G*. Let *z* be a vertex in P_1 such that $yz \in V(C_n)$. Let $S = \{y, z\}$. Then *S* is a vertex strong geodetic set of *G* so that $sg_x(C_n) = 2$.

Next assume that *n* is odd. It is easily verified that $sg_x(C_n) \ge 2$. Let *y* and *z* be the two antipodal vertices of *x*. Then $S_1 = \{y, z\}$ is a vertex strong geodetic set of *G* so that $sg_x(C_n) = 2$.

Corollary 2.10. (i) Let $K_{1,n-1}$ be a star. Then $sg_x(K_{1,n}) = n-2$ or n-1 according as x is an end or non-end vertex, where $n \ge 2$.

(ii) Let $G = K_n$ $(n \ge 2)$ be a complete graph. Then $sg_x(G) = n - 1$ for $x \in G$.

Theorem 2.11. For any vertex x in G, $1 \le sg_x(G) \le n-1$.

Proof. It is clear from the definition of the sg_x -set that $sg_x(G) \ge 1$. Also since the vertex x does not belong to the sg_x -set it follows that $sg_x(G) \le n-1$.

Remark 2.12. The bounds for $sg_x(G)$ in Theorem 2.11 are sharp. For an even cycle C_{2n} ,

 $sg_x(C_{2n}) = 2$ for any vertex x in C_{2n} . Also for any non-trivial path P_n , $sg_x(P_n) = 1$.

For any end vertex x in P_n . For the complete graph K_n , $sg_x(K_n) = n - 1$ for every vertex x in K_n .

Theorem 2.13. For any integers *a*, such that $1 \le a \le n - 1$, there is a minimal with respect to graph *G* of order *n* and a vertex *x* such that $sg_x(G) = a$.

Proof. If a = n - 1 or n - 2, $G = K_{1,n-1}$ then the theorem follows from Corollary 2.10 by using $G = K_{1,n-1}$. For $1 \le a \le n - 3$, the tree *T* in Figure 2.2 is provided for n = k + a vertices and it follows from Corollary 2.7 that $sg_x(T) = a$, where *x* is any non-end vertex of *T*. As the graph is a tree, it is minimal with respect to edges.

Theorem 2.14. For any graph *G*, $sg_x(G) = n - 1$ if and only if degx = n - 1. **Proof.** Let $sg_x(G) = n - 1$. Assume that degx < n - 1. Then there is a vertex *u* in *G*, such that $ux \notin E(G)$. Since *G* is connected, there is geodesic from *x* to *u* say *P* with length at least 2. By Note 2.3, *x* and the internal vertices of *n* do not belong to the sg_x -set and hence $sg_x(G) \le n - 2$, which is a contradiction.

Conversely, if degx = n - 1, then all other vertices of *G* are close to *x* so the sg_x -set is made up of all these vertices. Therefore, $sg_x(G) = n - 1$.

Theorem 2.15. Let *G* be a connected graph. For a vertex *x* in *G*, $sg_x(G) = 1$ if and only if *x* is an end vertex of *P*, $G = P_n$. **Proof.** Let *x* be an end vertex of *P*. Then by Corollary 2.8, $G = P_n$. Conversely, let $sg_x(G) = 1$. Then by Corollary 2.8, $sg_x(G) = 1 \forall x \in V$. Then there exists a vertex y such that every vertex of G is on a diameteral path joining x and y. Let $P: x, x_0, x_1, x_2, ..., x_n = y$ be the fixed x-y geodesic. We prove that $G = P_n$, Suppose not the case. Then there exists $z \in V \setminus V(P_n)$. Then $z \notin \tilde{I}_x[P]$, which is a contradiction. Therefore $G = P_n$.

Theorem 2.16. Let $K_{r,s}$ ($r, s \ge 2$) be a complete bipartite graph with bipartition (X, Y). Then $sg_x(K_{r,s})$ is s or s - 1 according as x is in X or x is in Y.

Proof. Case (i) $x \in X$.

Without loss of generality, let $x = x_1$. Since d(x, y) = 2 for every $y \in X - \{x\}$, we fix $P_i: x, y_i, x_{i+1}$ $(1 \le i \le r - 1)$ and so $sg_x(G) \ge r-1$. Let $S = \{x_2, x_3, \dots, x_r\}$. Then the vertices y_r, y_{r+1}, \dots, y_s does not lie on any $x - x_i$ geodesic $(1 \le i \le r - 1)$. Hence it follows that $S_1 = \{y_r, y_{r+1}, \dots, y_s\}$ is a subset of every vertex strong geodetic set of G and so $sg_x(G) \ge r - 1 + (s - (r - 1)) = s$. Let $S_2 = S \cup S_1$. Then S_2 is a vertex strong geodetic set of G so that $sg_x(G) = s$. Case (i) $x \in Y$.

Without loss of generality, let $x = y_1$. Since d(x, y) = 2 for every $y \in Y - \{x\}$, we fix $P_i: x, y_i, x_{i+1}$ $(1 \le i \le s - 1)$ and so $sg_x(G) \ge s - 1$. Let $S = \{y_2, y_3, \dots, y_s\}$. Then S is a vertex strong geodetic set of G so that $sg_x(G) = s - 1$.

Theorem 2.17. For the wheel $W_n = K_1 + C_{n-1}$ $(n \ge 5)$, $sg_x(W_n) = n - 1$ or n - 3 according as x is K_1 or x is in C_{n-1} . and $V(C_{n-1}) = \{v_1, v_2, \dots, v_{n-1}\}.$ Proof. Let $V(K_1) = y$ If $x \in V(K_1).$ Then bv Theorem 2.14, $sg_x(W_n) = n - 1$. Let $x \in V(C_{n-1})$. Without loss of generality, $x = v_1$. Fix $P: v_1, x, v_2$. Since d(G) = 2. $S = \{u_3, u_4, \dots, u_{n-2}\}$ is the set of antipodal vertices of x. Then by Observation 2.5 (ii), S is a subset of every vertex strong geodetic set of G and so $sg_x(G) \ge n-4$. Since $y \notin \tilde{I}_x[S]$, S is not a vertex strong geodetic set of G and so $sg_x(G) \ge n-3$. Let $S_1 = S \cup \{y\}$. Then S_1 is a vertex strong geodetic set of G so that $sg_x(G) = n-3$.

Theorem 2.18. For the fan graph $G = K_1 + P_{n-1}$ $(n \ge 5)$ $sg_{x}(G) = \begin{cases} n-1 & \text{if } x \in V(K_{1}) \\ n-3 & \text{if } x \in V(P_{n-1}) \end{cases}$ **Proof.** Let $V(K_{1}) = y$ and $V(P_{n-1}) = \{v_{1}, v_{2}, ..., v_{n-1}\}.$

Case (i) Let x = y, Fix $P: v_1, x, v_2$. Let $S = \{v_1, v_2, ..., v_n\}$. Then S is a set of all eccentric vertices for x. Observation 2.5 (ii) S is a subset of every vertex strong geodetic set of G and so $sg_x(G) \ge n-1$. Since S is a sg_x -set of G we have $sg_x(G) = n - 1$. Let $x \in V(P_{n-1})$. Let $x = v_1$. Then $S = \{v_3, v_4, \dots, v_{n-1}\}$ are eccentric vertices of G. By Observation 2.5(ii) S is a subset of every vertex strong geodetic set of G so that $sg_x(G) \ge n-3$. Since S is a sg_x -set of G, we have $sg_x(G) \ge n-3.$

If $x = v_{n-1}$ by the similar way we can prove that $sg_x(G) = n - 3$. Let $x \in \{v_2, v_3, \dots, v_{n-2}\}$. Without loss of generality let us assume that $x = v_2$. Then $\{v_1, v_{n-1}\}$ is a set of extreme vertices of G. By Observation 2.5 (i), $\{v_1, v_{n-1}\}$ is a subset of every sg_x -set of G. { v_4 , v_5 , ..., v_{n-2} } is a set of eccentric vertices of v_2 . Then { v_4 , v_5 , ..., v_{n-2} } is a subset of every vertex strong geodetic set of G and so $sg_x(G) \ge n-3$. Let $S' = \{v_1, v_4, v_5, \dots, v_{n-2}, v_{n-1}\}$. Then S' is a sg_x -set of G so that $sg_x(G) = n - 3$.

Theorem 2.19. Let G be a connected graph with k cut vertices. Then every vertex of G is either a cut vertex or an extreme vertex if and only if $sq_{x}(G) = n - k$ or n - k - 1 for any vertex x in G.

Proof. Let G be a connected graph in which each vertex falls into one of two categories: a cut vertex or an extreme vertex given that x is not a member of the sg_x -set of G. Observation 2.5 (i) states that $sg_x(G) = n - k$ or n - k - 1 depending on whether x is a cut vertex or an extreme vertex.

Conversely, suppose that $sg_x(G) = n - k$ or n - k - 1 for any vertex x in G.

Suppose there is a vertex x in G which is neither a cut vertex nor an extreme vertex. Since x is not an extreme vertex N(x) does not induce a complete subgraph and hence there exist u and v in N(x) such that d(u, v) = 2. Also, since x is not a cut vertex of G, $G - \{x\}$ is connected and hence there exists a u - v geodesic say $P: u, u_1, u_2, ..., u_n, v$ in $G - \{x\}$. Then $P \cup \{v, x, u\}$ is a shortest cycle, say C, that contains both the vertices u and v with length at least 4 in G.

Case 1. Suppose either u or v is not a cut vertex of G. Assume that u is not a cut vertex of G. It is obvious that x is on a u - v geodesic, hence u and x are not part of the sg_x -set. Therefore according to Theorem 2.11, $sg_x(G) \le n - k - 2$, which is a contradiction to the assumption.

Case 2. When u and v are both cut vertices of G. According to Theorem 1.1, there is a division of the set of vertices V - V $\{v\}$ into subsets U and W such that the vertex v is on every $u_1 - w_1$ path for vertices $u_1 \in U$ and $w_1 \in W$. Without loss of generality, assume that $x \in U$. Let y be vertex in W with maximum distance from v in W. By choice of y, the vertex y is not a cut vertex of G given that cycle C's order is at least 4, the vertices x and y do not belong to the sg_x -set and hence by Theorem 2.11 $sg_x(G) \le n-k-2$, which is a contradiction to the assumption. Hence every vertex of G is either a cutvertex or an extreme vertex.

Corollary 2.20. Let G be a connected block graph with number of cut vertices k. Then for any vertex in G, $sg_x(G) = n - k$ or n - k - 1.

Proof. Let *G* be a connected block graph. Then each *G* vertex is either cut or an extreme vertex and hence by Theorem 2.18, $sg_x(G) = n - k$ or n - k - 1 for any vertex *x* in *G*.

Theorem 2.21. If G is a connected of order n and diameter d, then $sg_x(G) \le n - d + 1$ for any vertex x in G.

Proof. For each vertex x in G then $sg_x(G) = n - 1 = n - d$ if $G = K_p$. So $G \neq K_p$. Let u and v be two vertices of G such that d(u, v) = d and let $u = v_0, v_1, ..., v_d = v$ be a u - v geodesic of length d. Now let $S = V(G) - \{v_1, v_2, ..., v_{d-1}\}$. If $x = v_i$ $(1 \le i \le d - 1)$, then clearly S is an x-vertex strong geodetic set of G so that $sg_x(G) \le |S| = n - d + 1$. If $x = v_i$ (i = 0, d), then $S - \{x\}$ is a x-vertex strong geodetic set of G so that $sg_x(G) \le |S| - 1 = n - d$.

Let $x \neq v_i$ $(0 \leq i \leq d)$. Let *P* and *Q* be $x \cdot v_0$ and $x \cdot v_d$ geodesic respectively. Let *y* be the last vertex common to both *P* and *Q*. Let P_1 be the $y \cdot v_0$ geodesic on *P* and let Q_1 be the $y \cdot v_d$ geodesic on *Q*. Let $T = (V(G) - [V(P_1) \cup V(Q_1)] \cup \{v_0, v_d\}$. Then it is clear that *T* is a *x*-vertex strong geodetic set of *G* and so.

 $sg_{x}(G) \leq n - [d(y, v_{0}) + d(y, v_{d}) + 1] + 2$ $\leq n - [d(v_{0}, v_{d}) + 1] + 2, \text{ by triangle inequality}$ = n - d + 1

Thus $sg_x(G) \le n - d + 1$ for any vertex x in G.

Theorem 2.22. For every non-trivial tree *T*. Let $sg_x(T) = n - d$ or n - d + 1 for any vertex *x* in *T* if and only if *T* is caterpillar.

Proof. Let *T* be any non-trivial tree. Let $P: u = v_0, v_1, ..., v_d = v$ be a diametral path. Let *k* be the number of end vertices of *T* and *l* be the number of internal vertices of *T* other than $v_0, v_1, ..., v_{d-1}$. Then d - 1 + k + k = p. By Corollary 2.7, $sg_x(T) = k$ or k - 1 for any vertex *x* in *T* and so $sg_x(T) = p - d - l + 1$ or p - d - l for any vertex *x* in *T*. Hence $sg_x(G) = n - d + 1$ or n - d for any vertex *x* in *T* if and only if l = 0, if and only if all the internal vertices of *T* lie on the diametral path *P*, if and only if *T* is caterpillar.

Theorem 2.23. For positive integers r, d and $l \ge 2$ with $r \le d \le 2r$, there exists a connected graph G with radG = r, diamG = d and $sg_x(G) = l$ for some vertex x in G.

Proof. If r = 1, then d = 1 or 2. If d = 1, let $G = K_{l+1}$. Then by Corollary 2.20, $sg_x(G) = l$ for any vertex x in G. If d = 2, let $G = K_{1,l}$. Then by Corollary 2.20, $sg_x(G) = l$ for the cut vertex x in G. Now let $r \ge 2$. We construct a graph G with the desired properties as follows.

Case 1. Suppose r = d. For l = 2. Let $G = C_{2r+1}$. Then r = d and $sg_x(G) = 2$ for any vertex x in G. Now let $l \ge 3$. Let $C_{2r}: u_1, u_2, ..., u_{2r}, u_1$ be a cycle of order 2r. Let G be the graph obtained by adding the new vertices $x_1, x_2, ..., x_{l-1}$ and joining each x_i $(1 \le i \le l)$ with u_1 and u_2 of C_{2r} . The graph G is shown in Figure 2.3.

It is easily verified that the eccentricity of each vertex of *G* is *r* so that radG = diamG = r. Fix P: $x_1, u_1, u_2, u_3 \dots, u_{r+1}$. Let $W = \{x_1, x_2, \dots, x_{l-1}\}$ be the set of all extreme vertices of *G* and let $x = u_{r+1}$. Then by Observation 2.5 (i) *W* is a subset of every vertex strong geodetic set of *G* and so $sg_x(G) \ge l - 1$. Since *W* is not a vertex strong geodetic set of *G*, $sg_x(G) \ge l$. Let $S = W \cup \{u_{r+2}\}$. Then *W* is a vertex strong geodetic set of *G*, $sg_x(G) = l$.

Case $r < d \leq 2r$. 2. Suppose Fix P: $u_{d-r}, u_{d-r-1}, \dots u_2, u_1, v_1, v_2 \dots, v_{r+1}.$ Let $C_{2r}: v_1,$ v_2, \dots, v_{2r}, v_1 be a cycle of order 2r and let $P_{d-r+1}: u_0, u_1, u_2, \dots, u_{d-r}$ be a path of order d-r+1. Let H be the graph obtained from C_{2r} and P_{d-r+1} by identifying v_1 in C_{2r} and u_0 in P_{d-r+1} . If l = 2, then let G = H let $x = v_{r+1}$. Then $S = \{v_r, u_{d-r}\}$ is a sg_x -set of G so that l = 2. If $l \ge 3$, then we add (l-2) new vertices w_1, w_2, \dots, w_{l-2} to H by joining each vertices w_i ($1 \le i \le l-2$) to the vertex u_{d-r-1} and obtain the graph G of Figure 2.4. Now radG = rand diamG = d. Let $W = \{w_1, w_2, \dots, w_{l-2}, u_{d-r}\}$ be the set of end vertices of G and let $x = v_{r+1}$. Then by Observation 2.5 (i) W is a subset of every vertex strong geodetic set of G and so $sg_x(G) \ge l-1$. Since W is not a vertex strong geodetic set of G, $sg_x(G) \ge l$.

Let $S_1 = W \cup \{v_{r+1}\}$. Then W is a vertex strong geodetic set of G, $sg_x(G) = l$.

Theorem 2.24. For any vertex x in G, $sg(G) \le sg_x(G) + 1$.

Proof. Let *x* be any vertex of *G* and let S_x be a sg_x -set of *G* lies on an x - y geodesic for some *y* in S_x . Thus $S_x \cup \{x\}$ is a vertex strong geodetic set of *G*. Since $sg_x(G)$ is the minimum cardinality of a vertex strong geodetic set, it follows that $sg(G) \le sg_x(G) + 1$.

Theorem 2.25. For every pair of integers *a* and *b* with $1 \le a \le b$, there exists a connected graph *G* such that $g_x(G) = a$ and $sg_x(G) = b$ for some $x \in V(G)$.

Proof. Let P: x, y, w, z be a path on three vertices. Let G be the graph obtained from P by adding the new vertices $z_1, z_2, ..., z_{a-1}, v_1, v_2, ..., v_{b-a}$ and introducing the edges zz_i $(1 \le i \le a), zv_i$ $(1 \le i \le b-a)$ and yv_i $(1 \le i \le b-a)$. The graph G is shown in Figure 2.5. Let x = y.

First we prove that $g_x(G) = a$. Let $Z = \{z_1, z_2, ..., z_a\}$ be the end vertices of G. Then by Theorem 1.1 (i), Z is a subset of every g_x -set of G and so $g_x(G) \ge a$. Since Z is a g_x -set of G, $g_x(G) = a$.

Next we prove that $sg_x(G) = b$. We fix the geodesic $P: x, w, z, z_1$ By Observation 2.5 (i), Z is a subset of every sg_x -set of G. It is easily observed that every sg_x - set of G contains each v_i $(1 \le i \le b - a)$ and so $sg_x(G) \ge a + b - a = b$. Let $S = Z \cup \{v_1, v_2, ..., v_{b-a}\}$. Then S is a sg_x -set of G so that $sg_x(G) = b$.

3. Conclusions

In this article we explore the concept of the strong geodetic number of a graph. We extend this concept to some other distance related parameters in graphs.

References

- [1] F. Buckley and F. Harary, Distance in Graphs, Addison-Wesley, Redwood City, CA, 1990.
- [2] L. G. Bino Infanta and D. Antony Xavier, Strong upper geodetic number of graphs, *Communications in Mathematics and Applications* 12(3), 2021, 737–748.
- [3] G. Chartrand and P. Zhang, The forcing geodetic number of a graph, Discuss. Math. Graph Theory, 19, 1999, 45-58.
- [4] G. Chartrand, F. Harary and P. Zhang, On the geodetic number of a graph, Networks, 39, 2002, 1-6.
- [5] V. Gledel, V. Irsic, and S. Klavzar, Strong geodetic cores and cartesian product graphs, arXiv:1803.11423 [math.CO] (30 Mar 2018).
- [6] Huifen Ge, Zao Wang-and Jinyu Zou Strong geodetic number in some networks, *Journal of Mathematical Resarch* 11(2), 2019, 20-29.
- [7] V. Irsic, Strong geodetic number of complete bipartite graphs and of graphs with specified diameter, *Graphs and Combin.* 34, 2018, 443–456.
- [8] V. Irsic, and S. Klavzar, Strong geodetic problem on Cartesian products of graphs, *RAIRO Oper. Res.* 52, 2018, 205–216.
- [9] P. Manuel, S. Klavzar, A. Xavier, A. Arokiaraj, and E. Thomas, Strong edge geodetic problem in networks, *Open Math.* 15, 2017, 1225–1235.
- [10] A. P. Santhakumaran and P. Titus, Vertex Geodomination in Graphs, *Bulletin of Kerala Mathematics Association* 2 (2), 2005, 45 57.
- [11] C.Saritha and T.Muthu Nesa Beula, The forcing strong geodetic number of a graph, proceedings of the International conference on Advances and Applications in Mathematical Sciences, 2022,76-80.