Non-Isomorphic Detour Self-Decomposition Of Graphs

Anlin Bena.E^{1*}, E.Ebin Raja Merly²

^{1*}Research Scholar(Reg.No:20213112092038), Department of Mathematics, Nesamony Memorial Christian College, Marthandam, Tamil Nadu-629 165, India. anlinbena@gmail.com Affiliated to Manonmaniam Sundaranar University , Abishekapatti, Tirunelveli, Tamil Nadu-627 012, India. ²Associate Professor, Department of Mathematics, Nesamony Memorial Christian College, Marthandam, Tamil Nadu-629 165, India. ebinmerly@gmail.com

*Corresponding Author: Anlin Bena.E

*Research Scholar(Reg.No:20213112092038), Department of Mathematics, Nesamony Memorial Christian College, Marthandam, Tamil Nadu-629 165, India. anlinbena@gmail.com

ABSTRACT

A graph G is is said to have a detour self decomposition $\pi = (G_1, G_2, ..., G_n)$ if every subgraph $G_i, 1 \le i \le n$ of G have the same detour number as the graph G.Detour self decomposition number of a graph G is the maximum cardinality of the detour self decomposition $\pi = (G_1, G_2, ..., G_n)$ and is denoted by $\pi_{sdn}(G)$. If no two detour self-decomposed subgraphs are isomorphic to each other then that decomposition is non-isomorphic detour self-decomposition and maximum cardinality of such decomposition in G is the non-isomorphic detour self-decomposition number of G. Few bounds and some general properties satisfied by this decomposition are studied.

Keywords: Detour number, Detour self-decomposition, Non-Isomorphic Detour self-decomposition, Detour self decomposition number, Non-Isomorphic Detour self-decomposition number

1 Introduction

The graphs G = (V, E) that we have used in this work are all finite, simple, connected and undirected. We refer to [4] for important graph theory terms. G. Chartrand, P. Zhang, and G.L. Johns [1] introduced the notion of the detour number. In the G graph for any two vertices x and y, notation D(x, y) refers to the detour distance which is the longest x - y path of length in G. The x - y detour means a x - y path D(x, y) length. Vertices lying at any x - y detour of G are represented by $I_D[x, y]$ and for any of the subset S of V(G), $I_D[S]$ implies $\bigcup_{x,y \in S} I_D[x, y]$. If $I_D[S] = V$, S is considered as a detour-set and also the detour set with the least number of vertices in G is the minimum detour set and also the cardinality of this set is a detour number.

Definition 1.1 [6] The edge disjoint subgraphs collection $G_1, G_2, ..., G_n$ of G represents the decomposition of G if G's each edge is in exactly one $G_i, 1 \le i \le n$.

Theorem 1.2 [2] Every detour-set for the non-trivial connected graph G consists every end vertices of that graph.

Theorem 1.3 [2] A tree T having k end-vertices has detour number k.

The idea behind H-decomposition was introduced by L.Posa, P. Erdos, and A. W. Goodman [3] and various problems related to H-decomposition has been studied in recent years. E.E.R. Merly & Anlin Bena E introduced the concept "Detour self-decomposition of graphs" [5].

Definition 1.4 [5] The decomposition $\Pi = (G_1, G_2, ..., G_n)$ of G is stated to be detour self-decomposition if $dn(G) = dn(G_i), 1 \le i \le n$ and detour self-decomposition number of G is the greatest cardinality of such decomposition and is represented as $\pi_{sdn}(G)$.

In this paper we introduce the concept of Non-isomorphic Detour self-decomposition of graphs.

2 Main Results

Definition 2.1 The decomposition $\Pi = (G_1, G_2, ..., G_n)$ of G is said to be a non-isomorphic detour self-decomposition if $dn(G) = dn(G_i), 1 \le i \le n$ and any pair of distinct subgraphs from Π is non-isomorphic to each other. The maximum cardinality of such Π is said to be the non-isomorphic detour self-decomposition number of G and is denoted as

 $\pi_{nsdn}(G).$

Example 2.2

Figure 2.1: A graph G and its decompositions Π_1, Π_2, Π_3

Consider the graph G, the detour set of G is $\{u_7, u_8, u_9, u_{10}\}$ and this set is minimum, hence dn(G) = 4. This graph G can be detour self-decomposed into the following three ways: $\Pi_1 = (G_1, G_2), \Pi_2 = (G'_1, G'_2), \Pi_3 = (G''_1, G''_2)$. Since the graphs $G_1, G_2, G'_1, G'_2, G''_1, G''_2$ are all trees with exactly four pendant vertices, from theorem 1.3, its detour number is 4. The subgraphs G'_1 and G'_2 are edge-disjoint but are isomorphic to each other and the subgraphs G''_1 and G''_2 are edge-disjoint but are isomorphic to each other. Thus the decompositions Π_2 and Π_3 are detour self-decompositions of G but are not non-isomorphic. In this graph Π_1 is the only non-isomorphic detour self-decomposition.

Theorem 2.3 The path graph P_p has non-isomorphic detour self-decomposition number n for all $n \in \mathbb{N}$ if and only if $\frac{n(n+1)}{2} + 1 \le p \le \frac{(n+1)(n+2)}{2}$.

Proof. Suppose a path P_p has non-isomorphic detour self-decomposition number n *i.e.*, $\pi_{nsdn}(P_p) = n$. In order to find the maximum possible such non-isomorphic detour self-decomposition $\Pi = (G_1, G_2, ..., G_n)$ the subgraphs must be decomposed in such a way that it must have least number of edges at the same time no two subgraphs can have same number of edges.

One such possibility is $|E(G_i)| = i, 1 \le i < n$ and $n \le |E(G_n)| \le 2n$. Since $|E(P_p)| = |E(G_1)| + |E(G_2)| + \dots + |E(G_n)|$, we get $\frac{n(n+1)}{2} \le |E(P_p)| \le \frac{n^2 + 3n}{2}$. Therefore $\frac{n(n+1)}{2} + 1 \le p \le \frac{(n+1)(n+2)}{2}$. Conversely, assume that $\frac{n(n+1)}{2} + 1 \le p \le \frac{(n+1)(n+2)}{2}$. First consider the path $P_{\frac{n(n+1)}{2}+1}$ can be decomposed by taking G_i as the graph induced by the vertices $\{v_{(i-1)i+1}, v_{(i-1)i+2}, \dots, v_{i(i+1)+1}\}, 1 \le i \le n$. Clearly $\Pi = (G_1, G_2, \dots, G_n)$ is a non-isomorphic detour self-detour decomposition of $P_{\frac{n(n+1)}{2}+1}$. Hence $\pi_{nsdn}(P_{\frac{n(n+1)}{2}+1}) = n$.

Now, let us consider paths P_p where $\frac{n(n+1)}{2} + 1 .$ $Any such path has <math>P_{\frac{n(n+1)}{2}+1}$ as a subgraph.

So considering the first $\frac{n(n+1)}{2} + 1$ vertices of P_p as the subgraph $P_{\frac{n(n+1)}{2}+1}$ and decomposing it same as above and removing G_1, G_2, \ldots, G_n from P_p results into a path $P_j, 1 < j \le n$.

But the path P_j and its subgraphs are always isomorphic to any one of G_1, G_2, \ldots, G_n .

Hence taking G'_n as the subgraph induced by the vertices

 $\{v_{\frac{(n-1)n}{2}+1}, v_{\frac{(n-1)n}{2}+2}, \dots, v_{\frac{n(n+1)}{2}+1}, \dots, v_p\}$ in P_p and remaining subgraphs G_1, G_2, \dots, G_{n-1} same as the decomposition of

 $P_{\underline{n(n+1)}_{+1}}$, we get the desired decomposition.

In this way each subgraph is non-isomorphic to each other and except G'_n all other $G_{i'}$ s have minimum possible edges hence this decomposition is maximum. Hence the theorem.

Theorem 2.4 For any $m, n \in \mathbb{Z}^+$ and m, n > 2, if a graph G has dn(G) = m and $\pi_{nsdn}(G) = n$ then $|E(G)| \ge n(m+2) - 3$.

Proof. Let $m, n \in \mathbb{Z}^+$ and m, n > 2.

Consider a graph G with dn(G) = m and $\pi_{nsdn}(G) = n$.

Let $\Pi = (G_1, G_2, \dots, G_n)$ be a non-isomorphic detour self-decomposition of G.

Since the subgraphs are non-isomorphic to each other, without loss of generality let us assume that $|E(G_1)| \le |E(G_2)| \le \ldots \le |E(G_n)|$.

We know that S_m is the only graph with least number of edges and detour number m for all m > 2. Hence each $|E(G_i)| \ge m$ for all $1 \le i \le n$.

Also, there exists exactly one spider tree upto isomorphism with m legs that has exactly m + 1 edges and detour number m which is non-isomorphic to S_m .

For graphs with edges greater than m + 1, there exists more than one graph upto isomorphism with detour number m and non-isomorphic to S_m .

Hence $|E(G_1)| \ge m, |E(G_2)| \ge m + 1$ and $|E(G_j)| \ge m + 2, 3 \le j \le n$. Since $|E(G)| = |E(G_1)| + |E(G_2)| + ... + |E(G_n)|$, we get $|E(G)| \ge n(m + 2) - 3$.

Theorem 2.5 Let G be a graph with detour number 2. If G has continuous monotonic path decomposition $\Pi = (G_1, G_2, ..., G_n)$, then Π is a non-isomorphic detour self-decomposition of G.

Proof. Let *G* be a graph with dn(G) = 2. Assume that *G* has continuous monotonic path decomposition $\Pi = (G_1, G_2, ..., G_n)$. By definition, $|E(G_i)| = i, 1 \le i \le n$. Therefore, any two subgraph from Π is always non-isomorphic to each other. Since each $G_i, 1 \le i \le n$ is a path, $dn(G_i) = 2, 1 \le i \le n$. Hence Π is a non-isomorphic detour self-decomposition of *G*.

Theorem 2.6 For any graph G, $1 \le \pi_{nsdn}(G) \le \pi_{sdn}(G)$.

Proof.

If a graph *G* cannot be further be decomposed into two or more subgraphs satisfying the conditions for non-isomorphic detour self-decomposition, then $\pi_{nsdn}(G) = 1$. Otherwise $\pi_{nsdn}(G) > 1$.

Hence $\pi_{nsdn}(G) \ge 1$.

Suppose the graph G has $\pi_{sdn}(G) = n$.

Then there exists a $\Pi = (G_1, G_2, \dots, G_n)$ such that $dn(G) = dn(G_i)$, for all $1 \le i \le n$.

If no two G_i and G_j where $1 \le i, j \le n$ and $i \ne j$ are isomorphic to each other than this Π is a non-isomorphic detour self-decomposition of G. In this case $\pi_{nsdn}(G) = \pi_{sdn}(G)$.

Otherwise G may or may not be decomposed into more than two subgraphs which are not isomorphic to each other and detour number is same as G. Then $\pi_{nsdn}(G) < \pi_{sdn}(G)$.

Hence
$$\pi_{nsdn}(G) \leq \pi_{sdn}(G)$$
.

Therefore, $1 \le \pi_{nsdn}(G) \le \pi_{sdn}(G)$.

Theorem 2.7 For a tree G, $\pi_{nsdn}(G) \ge 2$ if and only if $|V(G)| \ge 4$ and dn(G) = 2.

Proof. Let *G* be a tree.

Assume that *G* admits non-isomorphic detour self decomposition and $\pi_{nsdn}(G) \ge 2$. Let this decomposition be $\Pi = (G_1, G_2, \dots, G_n)$ where $n \ge 2$.

Since subgraph of each G_i , $1 \le i \le n$ is a tree and for a tree its minimum detour set is its pendant vertices, G_i has $dn(G_i)$

number of pendant vertices.

Each pendant vertex of G_i , $1 \le i \le n$ is either a pendant vertex or an inner vertex in G.

Since G is a tree, the subgraphs attached from these n_1 vertices are disjoint from each other. In G, if a pendant vertex of a subgraph $G_i(say)$ is also a pendant vertex of G_1 , then this subgraph contribute at least $dn(G_i) - 1$ pendant vertices.

In this way n_1 inner vertices of G_1 contribute $dn(G_j) - 1$ pendant vertices of G where $j \in \{1, 2, 3, ..., n\}$.

The remaining $dn(G_1) - n_1$ pendant vertices of G_1 contribute exactly one pendant vertex to G. By definition, $dn(G) = dn(G_i), 1 \le i \le n$.

> Number of pendant vertices of $G \ge (dn(G) - 1)n_1 + (dn(G) - n_1)$ = $dn(G)(n_1 + 1) - 2n_1$

But, number of pendant vertices of G = dn(G)Then, $dn(G) \ge dn(G)(n_1 + 1) - 2n_1$ Therefore $dn(G) \le 2$. But, by theorem, $dn(G) \ge 2$. Thus dn(G) = 2. Since dn(G) = 2, G is path. Given every subgraph in Π is non-isomorphic to each other, therfore without loss of generality, let us assume that $|E(G_1)| < |E(G_2)| < ... < |E(G_n)|$. Assuming the maximum possible decomposition in G, we get $|E(G_i)| = i, 1 \le i \le n - 1$ and $n \le |E(G_n)| \le 2n$. Since $|E(G) = |E(G_1)| + |E(G_2)| + ... + |E(G_n)|$, we get

 $\frac{n(n+1)}{2} \le |E(G)| \le \frac{n(n+1)}{2} + n.$ Therefore, $\frac{n(n+1)}{2} + 1 \le |V(G)| \le \frac{n(n+1)}{2} + n + 1.$ (1)

From equation 1 taking the lower bound and substituting the value $n \ge 2$, we get $|V(G)| \ge 4$. Conversely,assume that $|V(G)| \ge 4$ and dn(G) = 2. Since *G* is a tree and dn(G) = 2, *G* is a path. From theorem 2.3, if |V(G)| = 4, $\pi_{nsdn}(G) = 2$. Therefore for $|V(G)| \ge 4$, $\pi_{nsdn}(G) \ge 2$. Hence the theorem.

References

- 1. G. Chartrand, L. Johns and P. Zhang, Detour Number of a Graph, Util.Math.,64, 97-113,2003.
- 2. S. Elizabath Bernie, S. Joseph Robin and J.John, The Path Induced Detour Number of some graphs, Advances and Applications in Discrete Mathematics, 25(2), 129-141, 2020.
- 3. P. Erdos ,A.W. Goodman and L.Posa , The Representation of a Graph by Set Intersections, Canadian Journal of Mathematics, 18, 106-112, 1966.
- 4. F.Harary, Graph Theory, Narosa Publishing House, New Delhi, 1988.
- E.E.R. Merly and Anlin Bena. E, Detour Self-Decomposition of Graphs, European Chemical Bulletin, 12(Special issue 8), 6111-6120, 2023.
- 6. E.E.R. Merly and N. Gnanadhas, Arithmetic Odd Decomposition of Spider Tree, Asian Journal of Current Engineering and Maths, 2, 99-101, 2013.
- 7. E.E.R .Merly and M. Mahiba, Steiner decomposition number of graphs, Malaya Journal of Matematik, 1, 560-563, 2021.
- E.E.R .Merly and M. Mahiba, Some results on Steiner decomposition number of graphs, Kuwait Journal of Science, 50(2A), 1-15, 2023.
- 9. A.P. Santhakumaran and S. Athisayanathan, On the Connected Detour Number of a Graph, Journal of Prime Research in Mathematics, 5, 149-170, 2009.

From these subgraphs, we choose a subgraph that contains maximum number of pendant vertices that are inner vertices of G. Without loss of generality, let this graph be G_1 with n_1 pendant vertices which are inner vertices in G. Clearly $1 \le n_1 \le dn(G_1)$

Since detour number of G is the cardinality of set of pendant vertices, we calculate the pendant vertices of G by using G_1 .