Non-Isomorphic Detour Self-Decomposition Of Graphs

Anlin Bena. $\mathbf{E}^{1^{*}}$, E.Ebin Raja Merly ${ }^{2}$
${ }^{1 *}$ Research Scholar(Reg.No:20213112092038), Department of Mathematics,Nesamony Memorial Christian College, Marthandam, Tamil Nadu-629 165,India. anlinbena@gmail.com
Affiliated to Manonmaniam Sundaranar University ,Abishekapatti,Tirunelveli,Tamil Nadu-627 012,India.
${ }^{2}$ Associate Professor,Department of Mathematics,Nesamony Memorial Christian College,Marthandam,Tamil Nadu-629 165,India.ebinmerly@gmail.com
*Corresponding Author: Anlin Bena.E
*Research Scholar(Reg.No:20213112092038), Department of Mathematics,Nesamony Memorial Christian College, Marthandam, Tamil Nadu-629 165,India. anlinbena@gmail.com

Abstract

A graph G is is said to have a detour self decomposition $\pi=\left(G_{1}, G_{2}, \ldots, G_{n}\right)$ if every subgraph $G_{i}, 1 \leq i \leq n$ of G have the same detour number as the graph G.Detour self decomposition number of a graph G is the maximum cardinality of the detour self decomposition $\pi=\left(G_{1}, G_{2}, \ldots, G_{n}\right)$ and is denoted by $\pi_{s d n}(G)$. If no two detour self-decomposed subgraphs are isomorphic to each other then that decomposition is non-isomorphic detour self-decomposition and maximum cardinality of such decomposition in G is the non-isomorphic detour self-decomposition number of G. Few bounds and some general properties satisfied by this decomposition are studied.

Keywords: Detour number, Detour self-decomposition, Non-Isomorphic Detour self-decomposition, Detour self decomposition number, Non-Isomorphic Detour self-decomposition number

1 Introduction

The graphs $G=(V, E)$ that we have used in this work are all finite, simple, connected and undirected. We refer to [4] for important graph theory terms. G. Chartrand, P. Zhang, and G.L. Johns [1] introduced the notion of the detour number. In the G graph for any two vertices x and y, notation $D(x, y)$ refers to the detour distance which is the longest $x-y$ path of length in G. The $x-y$ detour means a $x-y$ path $D(x, y)$ length. Vertices lying at any $x-y$ detour of G are represented by $I_{D}[x, y]$ and for any of the subset S of $V(G), I_{D}[S]$ implies $\cup_{x, y \in S} I_{D}[x, y]$. If $I_{D}[S]=V, S$ is considered as a detour-set and also the detour set with the least number of vertices in G is the minimum detour set and also the cardinality of this set is a detour number.

Definition 1.1 [6] The edge disjoint subgraphs collection $G_{1}, G_{2}, \ldots, G_{n}$ of G represents the decomposition of G if G 's each edge is in exactly one $G_{i}, 1 \leq i \leq n$.

Theorem 1.2 [2] Every detour-set for the non-trivial connected graph G consists every end vertices of that graph.
Theorem 1.3 [2] A tree T having k end-vertices has detour number k.
The idea behind H-decomposition was introduced by L.Posa, P. Erdos, and A. W. Goodman [3] and various problems related to H -decomposition has been studied in recent years. E.E.R. Merly \& Anlin Bena E introduced the concept "Detour self-decomposition of graphs"[5].

Definition 1.4 [5] The decomposition $\Pi=\left(G_{1}, G_{2}, \ldots, G_{n}\right)$ of G is stated to be detour self-decomposition if dn $(G)=$ $d n\left(G_{i}\right), 1 \leq i \leq n$ and detour self-decomposition number of G is the greatest cardinality of such decomposition and is represented as $\pi_{\text {sdn }}(G)$.

In this paper we introduce the concept of Non-isomorphic Detour self-decomposition of graphs.

2 Main Results

Definition 2.1 The decomposition $\Pi=\left(G_{1}, G_{2}, \ldots, G_{n}\right)$ of G is said to be a non-isomorphic detour self-decomposition if $d n(G)=d n\left(G_{i}\right), 1 \leq i \leq n$ and any pair of distinct subgraphs from Π is non-isomorphic to each other. The maximum cardinality of such Π is said to be the non-isomorphic detour self-decomposition number of G and is denoted as
$\pi_{n s d n}(G)$.

Example 2.2

Figure 2.1: A graph G and its decompositions $\Pi_{1}, \Pi_{2}, \Pi_{3}$
Consider the graph G, the detour set of G is $\left\{u_{7}, u_{8}, u_{9}, u_{10}\right\}$ and this set is minimum, hence $d n(G)=4$. This graph G can be detour self-decomposed into the following three ways: $\Pi_{1}=\left(G_{1}, G_{2}\right), \Pi_{2}=\left(G_{1}^{\prime}, G_{2}^{\prime}\right), \Pi_{3}=\left(G_{1}^{\prime \prime}, G_{2}^{\prime \prime}\right)$.
Since the graphs $G_{1}, G_{2}, G_{1}^{\prime}, G_{2}^{\prime}, G_{1}^{\prime \prime}, G_{2}^{\prime \prime}$ are all trees with exactly four pendant vertices, from theorem 1.3, its detour number is 4 . The subgraphs G_{1}^{\prime} and G_{2}^{\prime} are edge-disjoint but are isomorphic to each other and the subgraphs $G_{1}^{\prime \prime}$ and $G_{2}^{\prime \prime}$ are edge-disjoint but are isomorphic to each other. Thus the decompositions Π_{2} and Π_{3} are detour self-decompositions of G but are not non-isomorphic. In this graph Π_{1} is the only non-isomorphic detour self-decomposition.

Theorem 2.3 The path graph P_{p} has non-isomorphic detour self-decomposition number n for all $n \in \mathbb{N}$ if and only if $\frac{n(n+1)}{2}+1 \leq p \leq \frac{(n+1)(n+2)}{2}$.

Proof. Suppose a path P_{p} has non-isomorphic detour self-decomposition number n.i.e., $\pi_{n s d n}\left(P_{p}\right)=n$.
In order to find the maximum possible such non-isomorphic detour self-decomposition $\Pi=\left(G_{1}, G_{2}, \ldots, G_{n}\right)$ the subgraphs must be decomposed in such a way that it must have least number of edges at the same time no two subgraphs can have same number of edges.
One such possibility is $\left|E\left(G_{i}\right)\right|=i, 1 \leq i<n$ and $n \leq\left|E\left(G_{n}\right)\right| \leq 2 n$.
Since $\left|E\left(P_{p}\right)\right|=\left|E\left(G_{1}\right)\right|+\left|E\left(G_{2}\right)\right|+\ldots+\left|E\left(G_{n}\right)\right|$, we get $\frac{n(n+1)}{2} \leq\left|E\left(P_{p}\right)\right| \leq \frac{n^{2}+3 n}{2}$.
Therefore $\frac{n(n+1)}{2}+1 \leq p \leq \frac{(n+1)(n+2)}{2}$.
Conversely, assume that $\frac{n(n+1)}{2}+1 \leq p \leq \frac{(n+1)(n+2)}{2}$.
First consider the path $P_{\frac{n(n+1)}{2}+1}^{2}$.
Then the path $\frac{P_{n(n+1)}^{2}+1}{}$ can be decomposed by taking G_{i} as the graph induced by the vertices $\left\{v_{\frac{(i-1) i}{2}+1}, v_{\frac{(i-1) i}{2}+2^{2}}, \ldots, v_{\frac{i(i+1)}{2}+1}\right\}, 1 \leq i \leq n$.
Clearly $\Pi=\left(G_{1}, G_{2}, \ldots, G_{n}\right)$ is a non-isomorphic detour self-detour decomposition of $\frac{P_{\frac{n(n+1)}{2}+1}}{}$.
Hence $\pi_{n s d n}\left(P_{\frac{n(n+1)}{2}+1}\right)=n$.
Now, let us consider paths P_{p} where $\frac{n(n+1)}{2}+1<p \leq \frac{(n+1)(n+2)}{2}$.
Any such path has $P_{\frac{n(n+1)}{2}+1}$ as a subgraph.
So considering the first $\frac{n(n+1)}{2}+1$ vertices of P_{p} as the subgraph $\frac{P_{n(n+1)}^{2}+1}{}$ and decomposing it same as above and removing $G_{1}, G_{2}, \ldots, G_{n}$ from P_{p} results into a path $P_{j}, 1<j \leq n$.
But the path P_{j} and its subgraphs are always isomorphic to any one of $G_{1}, G_{2}, \ldots, G_{n}$.
Hence taking G_{n}^{\prime} as the subgraph induced by the vertices
$\left\{v_{\frac{(n-1) n}{2}+1}, v_{\frac{(n-1) n}{2}+2}, \ldots, v_{\frac{n(n+1)}{2}+1}, \ldots, v_{p}\right\}$ in P_{p} and remaining subgraphs $G_{1}, G_{2}, \ldots, G_{n-1}$ same as the decomposition of
$P_{\frac{n(n+1)}{2}+1}$, we get the desired decomposition.
In this way each subgraph is non-isomorphic to each other and except G_{n}^{\prime} all other $G_{i,}$ s have minimum possible edges hence this decomposition is maximum.
Hence the theorem.
Theorem 2.4 For any $m, n \in \mathbb{Z}^{+}$and $m, n>2$, if a graph G has $d n(G)=m$ and $\pi_{n s d n}(G)=n$ then $|E(G)| \geq$ $n(m+2)-3$.

Proof. Let $m, n \in \mathbb{Z}^{+}$and $m, n>2$.
Consider a graph G with $d n(G)=m$ and $\pi_{n s d n}(G)=n$.
Let $\Pi=\left(G_{1}, G_{2}, \ldots, G_{n}\right)$ be a non-isomorphic detour self-decomposition of G.
Since the subgraphs are non-isomorphic to each other, without loss of generality let us assume that $\left|E\left(G_{1}\right)\right| \leq\left|E\left(G_{2}\right)\right| \leq$ $\ldots \leq\left|E\left(G_{n}\right)\right|$.
We know that S_{m} is the only graph with least number of edges and detour number m for all $m>2$. Hence each $\left|E\left(G_{i}\right)\right| \geq m$ for all $1 \leq i \leq n$.
Also, there exists exactly one spider tree upto isomorphism with m legs that has exactly $m+1$ edges and detour number m which is non-isomorphic to S_{m}.
For graphs with edges greater than $m+1$, there exists more than one graph upto isomorphism with detour number m and non-isomorphic to S_{m}.
Hence $\left|E\left(G_{1}\right)\right| \geq m,\left|E\left(G_{2}\right)\right| \geq m+1$ and $\left|E\left(G_{j}\right)\right| \geq m+2,3 \leq j \leq n$.
Since $|E(G)|=\left|E\left(G_{1}\right)\right|+\left|E\left(G_{2}\right)\right|+\ldots+\left|E\left(G_{n}\right)\right|$, we get
$|E(G)| \geq n(m+2)-3$.
Theorem 2.5 Let G be a graph with detour number 2. If G has continuous monotonic path decomposition $\Pi=$ $\left(G_{1}, G_{2}, \ldots, G_{n}\right)$, then Π is a non-isomorphic detour self-decomposition of G.

Proof. Let G be a graph with $d n(G)=2$.
Assume that G has continuous monotonic path decomposition $\Pi=\left(G_{1}, G_{2}, \ldots, G_{n}\right)$.
By definition, $\left|E\left(G_{i}\right)\right|=i, 1 \leq i \leq n$.
Therefore, any two subgraph from Π is always non-isomorphic to each other.
Since each $G_{i}, 1 \leq i \leq n$ is a path, $d n\left(G_{i}\right)=2,1 \leq i \leq n$.
Hence Π is a non-isomorphic detour self-decomposition of G.
Theorem 2.6 For any graph $G, 1 \leq \pi_{n s d n}(G) \leq \pi_{\text {sdn }}(G)$.

Proof.

If a graph G cannot be further be decomposed into two or more subgraphs satisfying the conditions for non-isomorphic detour self-decomposition, then $\pi_{n s d n}(G)=1$. Otherwise $\pi_{n s d n}(G)>1$.
Hence $\pi_{\text {nsdn }}(G) \geq 1$.
Suppose the graph G has $\pi_{s d n}(G)=n$.
Then there exists a $\Pi=\left(G_{1}, G_{2}, \ldots, G_{n}\right)$ such that $d n(G)=d n\left(G_{i}\right)$, for all
$1 \leq i \leq n$.
If no two G_{i} and G_{j} where $1 \leq i, j \leq n$ and $i \neq j$ are isomorphic to each other then this Π is a non-isomorphic detour self-decomposition of G. In this case $\pi_{n s d n}(G)=\pi_{s d n}(G)$.
Otherwise G may or may not be decomposed into more than two subgraphs which are not isomorphic to each other and detour number is same as G. Then $\pi_{n s d n}(G)<\pi_{s d n}(G)$.
Hence $\pi_{n s d n}(G) \leq \pi_{s d n}(G)$.
Therefore, $1 \leq \pi_{n s d n}(G) \leq \pi_{s d n}(G)$.
Theorem 2.7 For a tree $G, \pi_{n s d n}(G) \geq 2$ if and only if $|V(G)| \geq 4$ and $d n(G)=2$.
Proof. Let G be a tree.
Assume that G admits non-isomorphic detour self decomposition and $\pi_{n s d n}(G) \geq 2$. Let this decomposition be $\Pi=$ $\left(G_{1}, G_{2}, \ldots, G_{n}\right)$ where $n \geq 2$.
Since subgraph of each $G_{i}, 1 \leq i \leq n$ is a tree and for a tree its minimum detour set is its pendant vertices, G_{i} has $d n\left(G_{i}\right)$
number of pendant vertices.
Each pendant vertex of $G_{i}, 1 \leq i \leq n$ is either a pendant vertex or an inner vertex in G.
From these subgraphs, we choose a subgraph that contains maximum number of pendant vertices that are inner vertices of G. Without loss of generality, let this graph be G_{1} with n_{1} pendant vertices which are inner vertices in G. Clearly $1 \leq n_{1} \leq d n\left(G_{1}\right)$
Since detour number of G is the cardinality of set of pendant vertices, we calculate the pendant vertices of G by using G_{1}.
Since G is a tree, the subgraphs attached from these n_{1} vertices are disjoint from each other. In G, if a pendant vertex of a subgraph G_{j} (say) is also a pendant vertex of G_{1}, then this subgraph contribute atleast $d n\left(G_{j}\right)-1$ pendant vertices.
In this way n_{1} inner vertices of G_{1} contribute $d n\left(G_{j}\right)-1$ pendant vertices of G where $j \in\{1,2,3, \ldots, n\}$.
The remaining $d n\left(G_{1}\right)-n_{1}$ pendant vertices of G_{1} contribute exactly one pendant vertex to G.
By definition, $d n(G)=d n\left(G_{i}\right), 1 \leq i \leq n$.

$$
\begin{gathered}
\text { Numberofpendantverticesof } G \geq(d n(G)-1) n_{1}+\left(d n(G)-n_{1}\right) \\
=d n(G)\left(n_{1}+1\right)-2 n_{1}
\end{gathered}
$$

But, number of pendant vertices of $G=d n(G)$
Then, $d n(G) \geq d n(G)\left(n_{1}+1\right)-2 n_{1}$
Therefore $d n(G) \leq 2$.
But, by theorem, $d n(G) \geq 2$.
Thus $d n(G)=2$.
Since $d n(G)=2, G$ is path.
Given every subgraph in Π is non-isomorphic to each other, therfore without loss of generality, let us assume that $\left|E\left(G_{1}\right)\right|<\left|E\left(G_{2}\right)\right|<\ldots<\left|E\left(G_{n}\right)\right|$.
Assuming the maximum possible decomposition in G, we get
$\left|E\left(G_{i}\right)\right|=i, 1 \leq i \leq n-1$ and $n \leq\left|E\left(G_{n}\right)\right| \leq 2 n$.
Since $\left|E(G)=\left|E\left(G_{1}\right)\right|+\left|E\left(G_{2}\right)\right|+\ldots+\left|E\left(G_{n}\right)\right|\right.$, we get
$\frac{n(n+1)}{2} \leq|E(G)| \leq \frac{n(n+1)}{2}+n$.
Therefore,
$\frac{n(n+1)}{2}+1 \leq|V(G)| \leq \frac{n(n+1)}{2}+n+1$.
From equation 1 taking the lower bound and substituting the value $n \geq 2$, we get $|V(G)| \geq 4$.
Conversely, assume that $|V(G)| \geq 4$ and $d n(G)=2$.
Since G is a tree and $\operatorname{dn}(G)=2, G$ is a path.
From theorem 2.3, if $|V(G)|=4, \pi_{\text {nsdn }}(G)=2$.
Therefore for $|V(G)| \geq 4, \pi_{n s d n}(G) \geq 2$.
Hence the theorem.

References

1. G. Chartrand, L. Johns and P. Zhang, Detour Number of a Graph, Util.Math.,64, 97-113,2003.
2. S. Elizabath Bernie,S. Joseph Robin and J.John, The Path Induced Detour Number of some graphs, Advances and Applications in Discrete Mathematics, 25(2), 129-141, 2020.
3. P. Erdos ,A.W. Goodman and L.Posa , The Representation of a Graph by Set Intersections, Canadian Journal of Mathematics, 18, 106-112, 1966.
4. F.Harary, Graph Theory, Narosa Publishing House, New Delhi, 1988.
5. E.E.R. Merly and Anlin Bena. E, Detour Self-Decomposition of Graphs, European Chemical Bulletin, 12(Special issue 8), 6111-6120, 2023.
6. E.E.R. Merly and N. Gnanadhas, Arithmetic Odd Decomposition of Spider Tree, Asian Journal of Current Engineering and Maths, 2, 99-101, 2013.
7. E.E.R .Merly and M. Mahiba, Steiner decomposition number of graphs, Malaya Journal of Matematik, 1, 560-563, 2021.
8. E.E.R .Merly and M. Mahiba, Some results on Steiner decomposition number of graphs, Kuwait Journal of Science, 50(2A), 1-15, 2023.
9. A.P. Santhakumaran and S. Athisayanathan, On the Connected Detour Number of a Graph, Journal of Prime Research in Mathematics, 5, 149-170, 2009.
