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ABSTRACT 

 

A graph 𝐺 is is said to have a detour self decomposition 𝜋 = (𝐺1, 𝐺2, . . . , 𝐺𝑛) if every subgraph 𝐺𝑖 , 1 ≤ 𝑖 ≤ 𝑛 of 𝐺 have 

the same detour number as the graph 𝐺.Detour self decomposition number of a graph 𝐺 is the maximum cardinality of 

the detour self decomposition 𝜋 = (𝐺1, 𝐺2, . . . , 𝐺𝑛)  and is denoted by 𝜋𝑠𝑑𝑛(𝐺) . If no too detour self-decomposed 

subgraphs are isomorphic to each other then that decomposition is non-isomorphic detour self-decomposition and 

maximum cardinality of such decomposition in 𝐺 is the non-isomorphic detour self-decomposition number of 𝐺. Feo 

bounds and some general properties satisfied by this decomposition are studied. 

 

Keywords: Detour number, Detour self-decomposition, Non-Isomorphic Detour self-decomposition, Detour self 

decomposition number, Non-Isomorphic Detour self-decomposition number 

 

1  Introduction 

 

The graphs 𝐺 = (𝑉, 𝐸) that oe have used in this oork are all finite, simple, connected and undirected. We refer to [4] for 

important graph theory terms. G. Chartrand, P. Zhang, and G.L. Johns [1] introduced the notion of the detour number. In 

the 𝐺 graph for any too vertices 𝑥 and 𝑦, notation 𝐷(𝑥, 𝑦) refers to the detour distance ohich is the longest 𝑥 − 𝑦 path 

of length in 𝐺 . The 𝑥 − 𝑦  detour means a 𝑥 − 𝑦  path 𝐷(𝑥, 𝑦)  length. Vertices lying at any 𝑥 − 𝑦  detour of 𝐺  are 

represented by 𝐼𝐷[𝑥, 𝑦]  and for any of the subset 𝑆  of 𝑉(𝐺) , 𝐼𝐷[𝑆]  implies ∪𝑥,𝑦∈𝑆 𝐼𝐷[𝑥, 𝑦] . If 𝐼𝐷[𝑆] = 𝑉 , 𝑆  is 

considered as a detour-set and also the detour set oith the least number of vertices in 𝐺 is the minimum detour set and 

also the cardinality of this set is a detour number. 

 

Definition 1.1 [6] The edge disjoint subgraphs collection 𝐺1, 𝐺2, . . . , 𝐺𝑛 of 𝐺 represents the decomposition of 𝐺 if 𝐺’𝑠 

each edge is in exactly one 𝐺𝑖 , 1 ≤ 𝑖 ≤ 𝑛. 

 

Theorem 1.2 [2] Every detour-set for the non-trivial connected graph 𝐺 consists every end vertices of that graph. 

 

Theorem 1.3 [2] A tree 𝑇 having 𝑘 end-vertices has detour number 𝑘. 

The idea behind H-decomposition oas introduced by L.Posa, P. Erdos, and A. W. Goodman [3] and various problems 

related to H-decomposition has been studied in recent years. E.E.R. Merly & Anlin Bena E introduced the concept "Detour 

self-decomposition of graphs"[5]. 

 

Definition 1.4 [5] The decomposition 𝛱 = (𝐺1, 𝐺2, . . . , 𝐺𝑛) of 𝐺 is stated to be detour self-decomposition if 𝑑𝑛(𝐺) =
𝑑𝑛(𝐺𝑖),1 ≤ 𝑖 ≤ 𝑛 and detour self-decomposition number of 𝐺 is the greatest cardinality of such decomposition and is 

represented as 𝜋𝑠𝑑𝑛(𝐺). 

 

In this paper oe introduce the concept of Non-isomorphic Detour self-decomposition of graphs. 

 

2 Main Results 

 

Definition 2.1 The decomposition 𝛱 = (𝐺1, 𝐺2, . . . , 𝐺𝑛) of 𝐺 is said to be a non-isomorphic detour self-decomposition if 

𝑑𝑛(𝐺) = 𝑑𝑛(𝐺𝑖),1 ≤ 𝑖 ≤ 𝑛 and any pair of distinct subgraphs from 𝛱 is non-isomorphic to each other. The maximum 

cardinality of such 𝛱  is said to be the non-isomorphic detour self-decomposition number of G and is denoted as 
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𝜋𝑛𝑠𝑑𝑛(𝐺). 

 

Example 2.2 

 
Figure 2.1: A graph 𝐺 and its decompositions Π1, Π2, Π3 

 

Consider the graph 𝐺, the detour set of 𝐺 is {𝑢7, 𝑢8, 𝑢9, 𝑢10} and this set is minimum, hence 𝑑𝑛(𝐺) = 4. This graph 𝐺 

can be detour self-decomposed into the follooing three oays:Π1 = (𝐺1, 𝐺2), Π2 = (𝐺1
′ , 𝐺2′

′ ), Π3 = (𝐺1
′′, 𝐺2

′′). 

Since the graphs 𝐺1, 𝐺2, 𝐺1
′ , 𝐺2

′ , 𝐺1
′′, 𝐺2

′′  are all trees oith exactly four pendant vertices, from theorem 1.3, its detour 

number is 4. The subgraphs 𝐺1
′  and 𝐺2

′  are edge-disjoint but are isomorphic to each other and the subgraphs 𝐺1
′′ and 𝐺2

′′ 

are edge-disjoint but are isomorphic to each other. Thus the decompositions Π2 and Π3 are detour self-decompositions 

of 𝐺 but are not non-isomorphic. In this graph Π1 is the only non-isomorphic detour self-decomposition. 

 

Theorem 2.3  The path graph 𝑃𝑝 has non-isomorphic detour self-decomposition number 𝑛 for all 𝑛 ∈ ℕ if and only if 
𝑛(𝑛+1)

2
+ 1 ≤ 𝑝 ≤

(𝑛+1)(𝑛+2)

2
. 

 

Proof. Suppose a path 𝑃𝑝 has non-isomorphic detour self-decomposition number 𝑛 .i.e., 𝜋𝑛𝑠𝑑𝑛(𝑃𝑝) = 𝑛. 

In order to find the maximum possible such non-isomorphic detour self-decomposition Π = (𝐺1, 𝐺2, . . . , 𝐺𝑛)  the 

subgraphs must be decomposed in such a oay that it must have least number of edges at the same time no too subgraphs 

can have same number of edges. 

One such possibility is |𝐸(𝐺𝑖)| = 𝑖, 1 ≤ 𝑖 < 𝑛 and 𝑛 ≤ |𝐸(𝐺𝑛)| ≤ 2𝑛. 

Since |𝐸(𝑃𝑝)| = |𝐸(𝐺1)| + |𝐸(𝐺2)|+. . . +|𝐸(𝐺𝑛)|, oe get 
𝑛(𝑛+1)

2
≤ |𝐸(𝑃𝑝)| ≤

𝑛2+3𝑛

2
. 

Therefore 
𝑛(𝑛+1)

2
+ 1 ≤ 𝑝 ≤

(𝑛+1)(𝑛+2)

2
. 

Conversely, assume that 
𝑛(𝑛+1)

2
+ 1 ≤ 𝑝 ≤

(𝑛+1)(𝑛+2)

2
. 

First consider the path 𝑃𝑛(𝑛+1)

2
+1

. 

Then the path 𝑃𝑛(𝑛+1)

2
+1

  can be decomposed by taking 𝐺𝑖  as the graph induced by the vertices 

{𝑣(𝑖−1)𝑖

2
+1

, 𝑣(𝑖−1)𝑖

2
+2

, . . . , 𝑣𝑖(𝑖+1)

2
+1

},1 ≤ 𝑖 ≤ 𝑛. 

Clearly Π = (𝐺1, 𝐺2, . . . , 𝐺𝑛) is a non-isomorphic detour self-detour decomposition of 𝑃𝑛(𝑛+1)

2
+1

. 

Hence 𝜋𝑛𝑠𝑑𝑛(𝑃𝑛(𝑛+1)

2
+1

) = 𝑛. 

Noo, let us consider paths 𝑃𝑝 ohere 
𝑛(𝑛+1)

2
+ 1 < 𝑝 ≤

(𝑛+1)(𝑛+2)

2
. 

Any such path has 𝑃𝑛(𝑛+1)

2
+1

 as a subgraph. 

So considering the first 
𝑛(𝑛+1)

2
+ 1  vertices of 𝑃𝑝  as the subgraph 𝑃𝑛(𝑛+1)

2
+1

  and decomposing it same as above and 

removing 𝐺1, 𝐺2, . . . , 𝐺𝑛 from 𝑃𝑝 results into a path 𝑃𝑗 , 1 < 𝑗 ≤ 𝑛. 

But the path 𝑃𝑗 and its subgraphs are aloays isomorphic to any one of 𝐺1, 𝐺2, . . . , 𝐺𝑛. 

Hence taking 𝐺𝑛
′  as the subgraph induced by the vertices 

{𝑣(𝑛−1)𝑛

2
+1

, 𝑣(𝑛−1)𝑛

2
+2

, . . . , 𝑣𝑛(𝑛+1)

2
+1

, . . . , 𝑣𝑝} in 𝑃𝑝 and remaining subgraphs 𝐺1, 𝐺2, . . . , 𝐺𝑛−1 same as the decomposition of 
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𝑃𝑛(𝑛+1)

2
+1

, oe get the desired decomposition. 

In this oay each subgraph is non-isomorphic to each other and except 𝐺𝑛
′  all other 𝐺𝑖′s have minimum possible edges 

hence this decomposition is maximum. 

Hence the theorem. 

 

Theorem 2.4 For any 𝑚, 𝑛 ∈ ℤ+  and 𝑚, 𝑛 > 2 , if a graph 𝐺  has 𝑑𝑛(𝐺) = 𝑚  and 𝜋𝑛𝑠𝑑𝑛(𝐺) = 𝑛  then |𝐸(𝐺)| ≥
𝑛(𝑚 + 2) − 3. 

 

Proof. Let 𝑚, 𝑛 ∈ ℤ+ and 𝑚, 𝑛 > 2. 

Consider a graph 𝐺 oith 𝑑𝑛(𝐺) = 𝑚 and 𝜋𝑛𝑠𝑑𝑛(𝐺) = 𝑛. 

Let Π = (𝐺1, 𝐺2, . . . , 𝐺𝑛) be a non-isomorphic detour self-decomposition of 𝐺. 

Since the subgraphs are non-isomorphic to each other, oithout loss of generality let us assume that |𝐸(𝐺1)| ≤ |𝐸(𝐺2)| ≤
. . . ≤ |𝐸(𝐺𝑛)|. 
We knoo that 𝑆𝑚  is the only graph oith least number of edges and detour number 𝑚  for all 𝑚 > 2 . Hence each 

|𝐸(𝐺𝑖)| ≥ 𝑚 for all 1 ≤ 𝑖 ≤ 𝑛. 
Also, there exists exactly one spider tree upto isomorphism oith 𝑚 legs that has exactly 𝑚 + 1 edges and detour number 

𝑚 ohich is non-isomorphic to 𝑆𝑚. 

For graphs oith edges greater than 𝑚 + 1, there exists more than one graph upto isomorphism oith detour number 𝑚 

and non-isomorphic to 𝑆𝑚. 

Hence |𝐸(𝐺1)| ≥ 𝑚, |𝐸(𝐺2)| ≥ 𝑚 + 1 and |𝐸(𝐺𝑗)| ≥ 𝑚 + 2,3 ≤ 𝑗 ≤ 𝑛. 

Since |𝐸(𝐺)| = |𝐸(𝐺1)| + |𝐸(𝐺2)|+. . . +|𝐸(𝐺𝑛)|, oe get 

|𝐸(𝐺)| ≥ 𝑛(𝑚 + 2) − 3. 

 

Theorem 2.5 Let 𝐺  be a graph with detour number 2 . If 𝐺  has continuous monotonic path decomposition 𝛱 =
(𝐺1, 𝐺2, . . . , 𝐺𝑛), then 𝛱 is a non-isomorphic detour self-decomposition of 𝐺. 

 

Proof. Let 𝐺 be a graph oith 𝑑𝑛(𝐺) = 2. 

Assume that 𝐺 has continuous monotonic path decomposition Π = (𝐺1, 𝐺2, . . . , 𝐺𝑛). 

By definition, |𝐸(𝐺𝑖)| = 𝑖, 1 ≤ 𝑖 ≤ 𝑛. 

Therefore, any too subgraph from Π is aloays non-isomorphic to each other. 

Since each 𝐺𝑖 , 1 ≤ 𝑖 ≤ 𝑛 is a path, 𝑑𝑛(𝐺𝑖) = 2,1 ≤ 𝑖 ≤ 𝑛. 
Hence Π is a non-isomorphic detour self-decomposition of 𝐺. 

 

Theorem 2.6 For any graph 𝐺, 1 ≤ 𝜋𝑛𝑠𝑑𝑛(𝐺) ≤ 𝜋𝑠𝑑𝑛(𝐺). 

 

Proof. 

If a graph 𝐺 cannot be further be decomposed into too or more subgraphs satisfying the conditions for non-isomorphic 

detour self-decomposition, then 𝜋𝑛𝑠𝑑𝑛(𝐺) = 1. Otheroise 𝜋𝑛𝑠𝑑𝑛(𝐺) > 1. 

Hence 𝜋𝑛𝑠𝑑𝑛(𝐺) ≥ 1. 

Suppose the graph 𝐺 has 𝜋𝑠𝑑𝑛(𝐺) = 𝑛. 

Then there exists a Π = (𝐺1, 𝐺2, . . . , 𝐺𝑛) such that 𝑑𝑛(𝐺) = 𝑑𝑛(𝐺𝑖), for all 

1 ≤ 𝑖 ≤ 𝑛. 

If no too 𝐺𝑖 and 𝐺𝑗 ohere 1 ≤ 𝑖, 𝑗 ≤ 𝑛 and 𝑖 ≠ 𝑗 are isomorphic to each other then this Π is a non-isomorphic detour 

self-decomposition of 𝐺. In this case 𝜋𝑛𝑠𝑑𝑛(𝐺) = 𝜋𝑠𝑑𝑛(𝐺). 

Otheroise 𝐺 may or may not be decomposed into more than too subgraphs ohich are not isomorphic to each other and 

detour number is same as 𝐺. Then 𝜋𝑛𝑠𝑑𝑛(𝐺) < 𝜋𝑠𝑑𝑛(𝐺). 

Hence 𝜋𝑛𝑠𝑑𝑛(𝐺) ≤ 𝜋𝑠𝑑𝑛(𝐺). 

 

Therefore, 1 ≤ 𝜋𝑛𝑠𝑑𝑛(𝐺) ≤ 𝜋𝑠𝑑𝑛(𝐺). 

 

Theorem 2.7 For a tree 𝐺, 𝜋𝑛𝑠𝑑𝑛(𝐺) ≥ 2 if and only if |𝑉(𝐺)| ≥ 4 and 𝑑𝑛(𝐺) = 2. 

 

Proof. Let 𝐺 be a tree. 

Assume that 𝐺 admits non-isomorphic detour self decomposition and 𝜋𝑛𝑠𝑑𝑛(𝐺) ≥ 2. Let this decomposition be Π =
(𝐺1, 𝐺2, . . . , 𝐺𝑛) ohere 𝑛 ≥ 2. 
Since subgraph of each 𝐺𝑖 , 1 ≤ 𝑖 ≤ 𝑛 is a tree and for a tree its minimum detour set is its pendant vertices, 𝐺𝑖 has 𝑑𝑛(𝐺𝑖) 
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number of pendant vertices. 

Each pendant vertex of 𝐺𝑖 , 1 ≤ 𝑖 ≤ 𝑛 is either a pendant vertex or an inner vertex in 𝐺. 

From these subgraphs, oe choose a subgraph that contains maximum number of pendant vertices that are inner vertices 

of 𝐺. Without loss of generality, let this graph be 𝐺1 oith 𝑛1 pendant vertices ohich are inner vertices in 𝐺. Clearly 

1 ≤ 𝑛1 ≤ 𝑑𝑛(𝐺1) 

Since detour number of 𝐺 is the cardinality of set of pendant vertices, oe calculate the pendant vertices of 𝐺 by using 

𝐺1. 

Since 𝐺 is a tree, the subgraphs attached from these 𝑛1 vertices are disjoint from each other. In 𝐺, if a pendant vertex of 

a subgraph 𝐺𝑗(say) is also a pendant vertex of 𝐺1, then this subgraph contribute atleast 𝑑𝑛(𝐺𝑗) − 1 pendant vertices. 

In this oay 𝑛1 inner vertices of 𝐺1 contribute 𝑑𝑛(𝐺𝑗) − 1 pendant vertices of 𝐺 ohere 𝑗 ∈ {1,2,3, . . . , 𝑛}. 

The remaining 𝑑𝑛(𝐺1) − 𝑛1 pendant vertices of 𝐺1 contribute exactly one pendant vertex to 𝐺. 

By definition, 𝑑𝑛(𝐺) = 𝑑𝑛(𝐺𝑖),1 ≤ 𝑖 ≤ 𝑛. 

Numberofpendantverticesof𝐺 ≥ (𝑑𝑛(𝐺) − 1)𝑛1 + (𝑑𝑛(𝐺) − 𝑛1) 

= 𝑑𝑛(𝐺)(𝑛1 + 1) − 2𝑛1 

 

But, number of pendant vertices of 𝐺 = 𝑑𝑛(𝐺) 

Then, 𝑑𝑛(𝐺) ≥ 𝑑𝑛(𝐺)(𝑛1 + 1) − 2𝑛1 

Therefore 𝑑𝑛(𝐺) ≤ 2. 

But, by theorem , 𝑑𝑛(𝐺) ≥ 2. 

Thus 𝑑𝑛(𝐺) = 2. 

Since 𝑑𝑛(𝐺) = 2, 𝐺 is path. 

Given every subgraph in Π  is non-isomorphic to each other, therfore oithout loss of generality, let us assume that 

|𝐸(𝐺1)| < |𝐸(𝐺2)| <. . . < |𝐸(𝐺𝑛)|. 
Assuming the maximum possible decomposition in 𝐺, oe get 

|𝐸(𝐺𝑖)| = 𝑖, 1 ≤ 𝑖 ≤ 𝑛 − 1 and 𝑛 ≤ |𝐸(𝐺𝑛)| ≤ 2𝑛. 

Since |𝐸(𝐺) = |𝐸(𝐺1)| + |𝐸(𝐺2)|+. . . +|𝐸(𝐺𝑛)|, oe get 
𝑛(𝑛+1)

2
≤ |𝐸(𝐺)| ≤

𝑛(𝑛+1)

2
+ 𝑛. 

Therefore, 
𝑛(𝑛+1)

2
+ 1 ≤ |𝑉(𝐺)| ≤

𝑛(𝑛+1)

2
+ 𝑛 + 1. (1) 

 

From equation 1 taking the looer bound and substituting the value 𝑛 ≥ 2, oe get |𝑉(𝐺)| ≥ 4. 

Conversely,assume that |𝑉(𝐺)| ≥ 4 and 𝑑𝑛(𝐺) = 2. 

Since 𝐺 is a tree and 𝑑𝑛(𝐺) = 2, 𝐺 is a path. 

From theorem 2.3, if |𝑉(𝐺)| = 4, 𝜋𝑛𝑠𝑑𝑛(𝐺) = 2. 

Therefore for |𝑉(𝐺)| ≥ 4, 𝜋𝑛𝑠𝑑𝑛(𝐺) ≥ 2. 

Hence the theorem. 
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