On The Fault Tolerant Geodetic Number Of Total And Middle Number Of A Graph

T.Jeba Raj ${ }^{1 *}$, K.Bensiger ${ }^{2}$
${ }^{1 *}$ Assistant Professor, Department of Mathematics, Malankara Catholic College, Mariagiri, Kaliyakkavilai - 629 153, India. e-mail: jebarajmath@gmail.com
${ }^{2}$ Register Number. 20123082091004, Research Scholar, Department of Mathematics, Malankara Catholic College, Mariagiri, Kaliyakkavilai - 629 153, India. e-mail: bensigerkm83@gmail.com, Affiliated to Manonmaniam Sundaranar University, Abishekapatti, Tirunelveli - 627 012, Tamil Nadu, India.

Abstract

The total graph $T(G)$ of a graph G is a graph such that the vertex set of $T(G)$ corresponds to the vertices and edges of G and two vertices are adjacent in $T(G)$ if and only if their corresponding u_{1} element are either adjacent or incident in G. The middle graph of connected graph G denoted by $M(G)$ is the graph whose vertex set is $V(G) \cup E(G)$ where two vertices are adjacent if they are adjacent edges of G or one is a vertex of G and the other is an edge incident with it. In this article, we studied the fault tolerant geodetic number of total and middle graph of a graph.

Keywords: Total graph, middle graph, geodetic number, fault tolerant geodetic number.
AMS Subject Classification: 05C12.

1 Introduction

By a graph $G=(V, E)$, we mean a finite, undirected connected graph without loops or multiple edges. The order and size of G are denoted by n and m respectively. For basic graph theoretic terminology, we refer to [5, 8]. Two vertices u and v of said to be adjacent in G if $u v \in E(G)$. The neighborhood $N(v)$ of the vertex v in G is the set of vertices adjacent to v. The degree of the vertex v is $\operatorname{deg}(v)=|N(v)|$. If $e=\{u, v\}$ is an edge of a graph G with $\operatorname{deg}(u)=1$ and $\operatorname{deg}(v)>1$, then we call e an end edge, u a leaf and v a support vertex. For any connected graph G, a vertex $v \in V(G)$ is called a cut vertex of G if $V(G)-v$ is disconnected. The subgraph induced by set S of vertices of a graph G is denoted by $\langle S\rangle$ with $V(\langle S\rangle)=S$ and $E(\langle S\rangle)=\{u v \in E(G): u, v \in S\}$. A vertex v is called an extreme vertex of G if $\langle N(v)\rangle$ is complete. A vertex x is an internal vertex of an $u-v$ path P if x is a vertex of P and $x \neq u, v$. An edge e of G is an internal edge of an $u-v$ path P if e is an edge of P with both of its ends or in P. The distance $d(u, v)$ between two vertices u and v in a connected graph G is the length of a shortest $u-v$ path in G. An $u-v$ path of length $d(u, v)$ is called an $u-v$ geodesic. A vertex x is said to lie on an $u-v$ geodesic P if x isa vertex of P including the vertices u and v. For a vertex v of G, the eccentricity $e(v)$ is the distance between v and a vertex farthest from v. The minimum eccentricity among the vertices of G is the radius, $\operatorname{rad}(G)$ and the maximum eccentricity is its diameter, $\operatorname{diam}(G)$. We denote $\operatorname{rad}(G)$ by r and $\operatorname{diam}(G)$ by d. The closed interval $I[u, v]$ consists of u, v and all vertices lying on some $u-v$ geodesic of G. For a non-empty set $S \subseteq V(G)$, the set $I[S]=\cup_{u, v \in S} I[u, v]$ is the closure of S. A set $S \subseteq V(G)$ is called a geodetic set if $I[S]=V(G)$. Thus every vertex of G is contained in a geodesic joining some pair of vertices in S. The minimum cardinality of a geodetic set of G is called the geodetic number of G and is denoted by $g(G)$. For references on geodetic parameters in graphs see [1-4, 6, 7, 9-14,16,17]. Let S be a geodetic set of G and W be the set of extreme vertices of G. Then S is said to be a fault tolerant geodetic set of G, if $S-\{v\}$ is also a geodetic set of G for every $v \in S \backslash W$. The minimum cardinality of a fault tolerant geodetic set is called fault tolerant geodetic number and is denoted by $g_{f t}$-set of G. The minimum fault tolerant geodetic dominating set of G is denoted by $g_{f t}$-set of G. These concepts were studied in [15]. The following theorem is used in the sequel.

Theorem 1.1. [6] Each extreme vertex of a connected graph G belongs to every fault tolerant geodetic set of G.
On The Fault Tolerant Geodetic Number of Total and Middle Number of a Graph
Definition 2.1. The total graph $T(G)$ of a graph G is a graph such that the vertex set of
$T(G)$ corresponds to the vertices and edges of G and two vertices are adjacent in $T(G)$ if and only if their corresponding u_{1} element are either adjacent or incident in G.
Definition 2.2. The middle graph of connected graph G denoted by $M(G)$ is the graph
whose vertex set is $V(G) \cup E(G)$ where two vertices are adjacent if
(i) They are adjacent edges of G, or
(ii) One is a vertex of G and the other is an edge incident with it.

Theorem 2.3. Let G be the total graph of the graph $C_{n}(n \geq 8)$. Then
$g_{f t}(G)= \begin{cases}2 n & \text { if } n \in\{4,5\} \\ 8 & \text { if } n \text { is even and } n \geq 6 \\ 12 & \text { if } n \text { is odd and } n \geq 7\end{cases}$
Proof. Let $V\left(C_{n}\right)=\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$ and $E\left(C_{n}\right)=\left\{u_{1}, u_{2}, \ldots, u_{n-1}\right\}$. Then
$V(G)=V\left(C_{n}\right) \cup E\left(C_{n}\right)$. Therefore $|V(G)|=2 n . E(G)=\left\{v_{i} v_{i+1} ; 1 \leq i \leq n-1\right\} \cup\left\{u_{i} v_{i}, u_{i} v_{i+1} ; 1 \leq i \leq n-1\right\} \cup$ $\left\{u_{i} u_{i+1} ; 1 \leq i \leq n-2\right\}$. Therefore $|E(G)|=8 n-2$.
For $n=4$ or $5, S=V(G)$ is the unique $g_{f t}$-set of G so that $g_{f t}(G)=|V(G)|=2 n$. Let S be a $g_{f t}$-set of G. We have the following cases.

Case (i) Let n be a even. Let $n=2 k(k>3)$. Then S contains four pair of antipodal vertices from $V(G)$ and so $g_{f t}(G) \geq$
8. Let $S^{\prime}=\left\{v_{1}, v_{2}, v_{k+1}, v_{2 k}\right\} \cup\left\{u_{1}, u_{2}, u_{k+1}\right.$,
$\left.u_{2 k}\right\}$. Then S^{\prime} is a $g_{f t}$-set of G so that $g_{f t}(G)=8$.
Case (ii) Let n be odd. Let $n=2 k+1(k \geq 3)$. It is easily observed that S contains four pairs of antipodal vertices of $V(G)$ and so $g_{f t}(G) \geq 12$. Let $S=\left\{v_{1}, v_{2}, v_{k+1}\right.$,
$\left.v_{k+2}, v_{2 k-1}, v_{2 k}\right\} \cup\left\{u_{1}, u_{2} \cdot u_{k+1}, u_{k+2}, u_{2 k-1}, u_{2 k}\right\}$. Then S is a $g_{f t}$-set of G so that $g_{f t}(G)=12$.

Figure 2.1
Theorem 2.4. Let G be the total graph of the star $K_{1, n-1}(n \geq 4)$. Then $g_{f t}(G)=2 n-2$.
Proof. Let $Z=\left\{v_{1}, v_{2}, \ldots, v_{n-1}\right\}$ be the set of all end vertices of G. Then by Theorem
$1.1, Z$ is a subset of every fault tolerant geodetic set of G and so $g_{f t}(G) \geq n-1$. Since Z is a fault tolerant geodetic set of $G, g_{f t}(G) \geq n$. Let $S=Z \cup\left\{u_{1}, u_{2}, \ldots, u_{n-1}\right\}$. Then S is a fault tolerant geodetic set of G so that $g_{f t}(G) \leq 2 n-2$. We prove that $g_{f t}(G)=2 n-2$. On the contrary suppose that $g_{f t}(G) \leq 2 n-3$. Then there exists a $g_{f t^{\prime}}$-set S^{\prime} of G set that $\left|S^{\prime}\right| \leq 2 n-3$. Let $u \in S^{\prime}$ such that $u \notin S$. Then $S^{\prime}-\{u\}$ is not a fault tolerant geodetic set of G, which is a contradiction. Therefore $g_{f t}(G)=2 n-2$.

Figure 2.2
Theorem 2.5. Let G be the total graph of the path $P_{n}(n \geq 4)$. Then $g_{f t}(G)=4$.
Proof. Let $V\left(P_{n}\right)=\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$ and $E\left(P_{n}\right)=\left\{u_{1}, u_{2}, \ldots, u_{n-1}\right\}$. Then
$V(G)=V\left(P_{n}\right) \cup E\left(P_{n}\right)$. Therefore $|V(G)|=2 n-1 . E(G)=\left\{v_{i} v_{i+1} ; 1 \leq i \leq n-1\right\}$
$\cup\left\{u_{i} v_{i}, u_{i} v_{i+1} ; 1 \leq i \leq n-1\right\} \cup\left\{u_{i} u_{i} ; 1 \leq i \leq n-2\right\}$. Therefore $|E(G)|=4 n-2$. Let $Z=\left\{v_{1}, v_{n}\right\}$ be the set of all extreme vertices of G. By Theorem $1.1, Z$ is a subset of every fault tolerant geodetic set of G. Since $I[Z] \neq V(G), Z$ is not a fault tolerant geodetic set of G. It is easily observed that every minimum fault tolerant geodetic set of G contains exactly two vertices $E\left(P_{n}\right)$ and so $g_{f t}(G) \geq 4$. Let $S=Z \cup\left\{u_{1}, u_{n-1}\right\}$. Then S is a fault tolerant geodetic set of G so that $g_{f t}(G)=4$.

Figure 2.3
Theorem 2.6. Let G be the middle graph of the cycle $C_{n}(n \geq 8)$. Then $g_{f t}(G)=n$.
Proof. Let $S=\left\{x, v_{1}, v_{2}, \ldots, v_{n-1}\right\}$. Then S is the set of all extreme vertices of G. By the definition of fault tolerant geodetic set of $G, g_{f t}(G)=n$.

Theorem 2.7. Let G be the middle graph of the star $K_{1, n-1}(n \geq 4)$. Then $g_{f t}(G)=n$.
Proof. Let $S=V\left(C_{n}\right)$. Then S is the set of all extreme vertices of G. By the definition of fault tolerant geodetic set, $g_{f t}(G)=n$.

Type equation here.

Figure 2.5
Theorem 2.8. Let G be the middle graph of the path $P_{n}(n \geq 4)$. Then $g_{f t}(G)=n$.
Proof. Let $S=V\left(P_{n}\right)$. Then S is the set of all extreme vertices of G. By the definition of fault tolerant geodetic set of $G, g_{f t}(G)=n$.

References

1. H.A. Ahangar, S. Kosari, S.M. Sheikholeslami and L. Volkmann, Graphs with large geodetic number, Filomat, 29:6 (2015), 1361 - 1368.
2. H. Abdollahzadeh Ahangar, V. Samodivkin, S. M. Sheikholeslami and Abdollah Khodkar, The restrained geodetic number of a graph, Bulletin of the Malaysian Mathematical Sciences Society, 38(3), (2015), 1143-1155.
3. H. Abdollahzadeh Ahangar, Fujie-Okamoto, F. and Samodivkin, V., On the forcing connected geodetic number and the connected geodetic number of a graph, Ars Combinatoria, 126, (2016), 323-335.
4. D. Anusha, J. John and S. Joseph Robin, The geodetic hop domination number of complementary prisms, Discrete Mathematics, Algorithms and Applications,13(6), (2021),2150077.
5. S. Beula Samli, J John and S. Robinson Chellathurai, The double geo chromatic number of a graph, Bulletin of the International Mathematical Virtual Institute 11 (1), (2021) 25-38.
6. F. Buckley and F.Harary, Distance in Graphs, Addition- Wesley, Redwood City, CA, (1990).
7. G. Chartrand, P. Zhang, The forcing geodetic number of a graph, Discuss. Math. Graph Theory, 19 (1999), 45-58.
8. G. Chartrand, F. Harary and P. Zhang, On the geodetic number of a graph, Networks, 39(1), (2002), 1-6.
9. T.W. Hayes, P.J. Slater and S.T. Hedetniemi, Fundamentals of domination in graphs, Boca Raton, CA: CRC Press, (1998).
10. A. Hansberg and L.Volkmann, On the geodetic and geodetic domination numbers of a graph, Discrete Mathematics, 310, (2010), 2140-2146.
11. J. John and D. Stalin, The edge geodetic self decomposition number of a graph RAIRO-Operations Research 55, (2019), S1935-S1947
12. J. John and D. Stalin, Edge geodetic self-decomposition in graphs, Discrete Mathe- matics, Algorithms and Applications 12 (05), (2020), 2050064
13. J. John, The forcing monophonic and the forcing geodetic numbers of a graph, Indonesian Journal of Combinatorics .4(2), (2020) 114-125.
14. J. John and D.Stalin, Distinct edge geodetic decomposition in Graphs, Communic- ation in Combinatorics and Optimization, 6 (2),(2021), 185-196
15. J .John, On the vertex monophonic, vertex geodetic and vertex Steiner numbers of graphs, Asian-European Journal of Mathematics 14 (10), (2021), 2150171.
16. T. Jebaraj and . K. Bensiger, The upper and the forcing fault tolerent geodetic number of a graph, Ratio Mathematica, 44 (2022) 167-174.
17. A.P. Santhakumaran and J. John, The connected edge geodetic number of a graph, SCIENTIA Series A: Mathematical Sciences 17,(2009), 67-82
18. A.P. Santhakumaran and J. John, The upper edge geodetic number and the forcing edge geodetic number of a graph, Opuscula Mathematica 29 (4), (2009), 427-441.
19. A. P. Santhakumaran and J. John, The upper connected edge geodetic number of a graph, Filomat, 26(1), (2012), 131-141.

Journal for Re Attach Therapy and Developmental Diversities
eISSN: 2589-7799
2023 December; 6 (10s)(2): 2286-2291
20. A.P. Santhakumaran and T. Jebaraj, Double geodetic number of a graph, Discussi- ones Mathematicae, Graph Theory 32 (2012) 109-119
21. D. Stalin and J John, Edge geodetic dominations in graphs, Int. J. Pure Appl. Math, 116 (22), (2017), 31-40.

