A New Notion Of Open Sets In Nano Topological Spaces

R. Raman^{1*}, Dr. S. Pious Missier², Dr.E.Sucila³

^{1*}Research Scholar (Reg. No- 19222052091009), Department of Mathematics, G. Venkataswamy Naidu College, (Affiliated to Manonmaniam Sundaranar University, Abishekapatti, Tirunelveli), Kovilpatti,Thoothukudi-628502, Tamilnadu, India. Email: rramanram1988@gmail.com

²Head & Associate Professor, Department of Mathematics, Don Bosco College of Arts and Science, (Affiliated to Manonmaniam Sundaranar University, Abishekapatti, Tirunelveli), KeelaEral,Thoothukudi-628908, Tamilnadu,India. Email: spmissier@gmail.com

³Associate Professor, Department of Mathematics, G. Venkataswamy Naidu College, (Affiliated to Manonmaniam Sundaranar University, Abishekapatti, Tirunelveli), Kovilpatti, Thoothukudi-628502,Tamilnadu, India. Email: ramsucila@gmail.com

ABSTRACT

In this paper, we introduce a new class of nano sets referred to as nano bc-open sets(briefly N bc-open) in nano topological space (N TS). In addition, we investigate its fundamental properties.

Keywords: b-open sets, No-b-open sets, No- bc open sets, No- bc closed sets. **AMS Subject Classification:** 54A05, 54A10

I. INTRODUCTION

The study of nano topology was started by M. Lellis Thivagar et al [8] with regard to a subset X of a universe that is described in terms of lower, upper and boundary approximations of X. He additionally described nano interior and nano closure in nano topological spaces.(or briefly NoT Spaces). Andrijevic [1] presented and studied a category of generalized open sets in a topological space referred to as b-open sets. Further C. Indirani et al [4] created and studied nano b-open sets (No b sets) in nano topological spaces (NoT Spaces). Bc open sets were first introduced in topological spaces by Hariwan Z. Ibrahim [6]

In this study, a new class of open sets named asnano bc- open sets in№TS is presented and its characteristics and properties are examined.

II. PRELIMINARIES

Definition 2.1. [8] Let U denote a non-empty finite set of elements referred to as universe and R represents an equivalence relation on Unamed as the indiscernibility relation. Elements belonging to the same equivalence class are said to be indiscernible with one another. The pair (U, R) is called as the **approximation space.** Let $X \subseteq U$.

(i) *The lower approximation* of X with respect to R is the set of all elements, which can be forcertain classified asXwith respect to Rand it is denoted by $L_{\mathcal{R}}(X)$. That is, $L_{\mathcal{R}}(X)=\cup_{X\in U}\{R_x : R_x\subseteq X\}$ where R_x denotes the equivalence class determined by $x \in U$.

(ii) *The upper approximation* of X with respect to R is the set of all elements, which can be possibly classified as X with respect to R and it is denoted by $U_{\mathcal{R}}(X)$. That is $U_{\mathcal{R}}(X) = \bigcup_{X \in U} \{ R_x : R_x \cap X \neq \emptyset \}$.

(iii) *The boundary region* of X with respect to R is the set of all elements, that can be classified neither as X nor as not-X with respect to R and it is denoted by $B_{\mathcal{R}}(X)$. That is, $B_R(X)=U_{\mathcal{R}}(X)-L_{\mathcal{R}}(X)$.

Definition 2.2. [8] Let Urepresent the universe and R represent an equivalence relation on U. Then $\tau_R(X) = \mathbb{N} \mathbb{P}^T = \{ U, \emptyset, L_{\mathcal{R}}(X), U_{\mathcal{R}}(X), B_{\mathcal{R}}(X) \}$ where $X \subseteq U$. Then, $\tau_{\mathcal{R}}(X)$ satisfies the axioms listed below.

(i) Uand $\emptyset \in \tau_{\mathcal{R}}(X)$.

(ii) The union of the elements of any sub collection of $\tau_{\mathcal{R}}(X)$ is in $\tau_{\mathcal{R}}(X)$.

(iii) The intersection of the elements of any finite subcollection of $\tau_{\mathcal{R}}(X)$ is in $\tau_{\mathcal{R}}(X)$. That is, $\tau_{\mathcal{R}}(X)$ is a topology on U referred to as the *nano topology*($\mathbb{N}^{\mathbb{T}}$) on U with respect to X. We call $(U, \tau_{\mathcal{R}}(X))$ (or) $(U, \mathbb{N}^{\mathbb{T}})$ as the *nano topological space*($\mathbb{N}^{\mathbb{T}}$ S-in short). The elements of $\mathbb{N}^{\mathbb{T}}$ are known as $\mathbb{N}^{\mathbb{D}}$ open sets(briefly, $\mathbb{N}^{\mathbb{D}}$ -OS). The complement of $\mathbb{N}^{\mathbb{D}}$ -open sets are $\mathbb{N}^{\mathbb{D}}$ -closed sets(briefly, $\mathbb{N}^{\mathbb{D}}$ -CS).

Example 2.3. [8] Let U={p,q,r,s} with U/R = {{p},{q},{r,s}} and X={p,r} \subset U. Then the nano topology is $\tau_{\mathcal{R}}(X) = \mathbb{N}\mathbb{Q}^{T} = \{ U, \emptyset, \{p\}, \{r,s\}, \{p,r,s\} \}$.

Remark 2.4. [8] If $\tau_{\mathcal{R}}(X) = \mathbb{N} \mathbb{P}^T$ is the nano topology on Uwith respect to X and B_N isanano subset of $\mathbb{N} \mathbb{P}TS$, then $B_N = \{ U, L_{\mathcal{R}}(X), B_{\mathcal{R}}(X) \}$ is referred to as the basis for $\tau_{\mathcal{R}}(X)$.

Definition 2. [8] If (U, \mathbb{N}^T) is a nano T. space (\mathbb{N}^T S) with respect to X where

X⊆Uand if A_N is a nano subset in №TS and if A_N ⊆U, then

- (1) The Nano interior of A_N is defined as the union of all nano-open subsets of A and it is denoted by $Neint(A_N)$. That is, $Neint(A_N)$ is the largest nano-open subset of A_N .
- (2) The Nano closure of A_N is defined as the intersection of all nano closed sets containing A_N and it is denoted by $N \otimes cl(A_N)$. That is, $N \otimes cl(A_N)$ is the smallestnano closed set containing A_N .

Definition 2.6. Let $(U, \tau_{\mathcal{R}}(X))$ be a NoTS and $A_N \subseteq U$. Then A_N is said to be

(1) **Nano-semiopenset** (No-SO set) [8] if $A_N \subseteq Nocl[Noint(A_N)]$ and **Nano semi-closed** (No-SC set) [7] if $Noint[Nocl(A_N)] \subseteq A_N$.

(2) Nano- θ openset(\mathbb{N}_{Θ} - θ O set) [3] if for each $x \in A_N$, there exists a nano open set (\mathbb{N}_{Θ} -OS) G such that $x \in G \subset \mathbb{N}_{\Omega}$ cl(G) $\subset A_N$.

(3) Nano- θ semiopen (\mathbb{N}_{θ} - θ SO) [3] if for each $x \in A_N$, there exists a nano semi open set (\mathbb{N}_{θ} -SO set) G such that $x \in G \subset \mathbb{N}_{\theta}$ cl(G) $\subset A_N$.

 $\mathbb{N} - SO(U, X)$, $\mathbb{N} - \theta O(U, X)$ and $\mathbb{N} - \theta SO(U, X)$ respectively denote the families of all nano semi-open($\mathbb{N} - SO$), nano $\theta - open(\mathbb{N} - \theta O)$ and nano θ semi-open($\mathbb{N} - \theta SO$)subsets of U.

Definition 2.7. [3] Let $(U, \tau_{\mathcal{R}}(X))$ is a NoTS and $A_N \subseteq U$. Then A_N is said to be nano- bopen set (No bo set) if $A_N \subseteq Nocl(Noint(A_N)) \cup Noint(Nocl(A_N))$. The complement of nano- bopen set is called nano- bclosed set (No bcset).

Example 2.8. [3] Let $U = \{p,q,r,s\}$ with $U/R = \{p\}, \{r\}, \{q,s\}$ and $X = \{p,q\}$. Then the nano topology $\tau_R(X) = N \circ^T = \{U, \emptyset, \{p\}, \{p,q,s\}, \{q,s\}\}$ and nano b-open sets are $U, \emptyset, \{p\}, \{q\}, \{s\}, \{p,q\}, \{p,r\}, \{p,s\}, \{q,s\}, \{p,q,r\}, \{p,q,s\}, \{q,r,s\}.$

Definition 2.9. [10] A $\mathbb{N} \mathbb{T}S$ (U, $\mathbb{N} \mathbb{T}$) is referred to as nano locally Indiscrete space if every nano open set ($\mathbb{N} \mathbb{O}-OS$) is nano closed set.($\mathbb{N} \mathbb{O}-CS$).

III. NANO-BC OPEN SETS (№-bC open)

Definition 3.1. A nano set A_N of a nano topological space (\tilde{U}_N, τ_N) is called nano bc - open set (N_P -bc- OS) if for every $\varkappa \in A_N \in N_P$ -BO(\tilde{U}_N, τ_N), there exists a nano closed set (N_P -CS) \mathcal{H}_N such that $\varkappa \in \mathcal{H}_N \subset A_N$.

The family of all nano b \mathbb{C} -open sets of a Nano topological space (NTS in short) (\tilde{U}_N, τ_N) is denoted by N₂-B $\mathbb{C}O(\tilde{U}_N, \tau_N)$.

Example 3.2. Let $\tilde{U}_N = \{a_1, a_2, a_3, a_4\}, \tilde{U}_N / \mathcal{R} = \{\{a_1\}, \{a_3\}, \{a_2, a_4\}\}$ and $X_N = \{a_1, a_2\} \subset \tilde{U}_N$. Then the Nano topology $\mathbb{N}^{\underline{D}^T} = \tau_{\mathcal{R}}(X_N) = \{\tilde{U}_N, \emptyset_N, \{a_1\}, \{a_1, a_2, a_4\}, \{a_2, a_4\}\}$. Then the nano Closed sets are $\tilde{U}_N, \emptyset_N, \{a_2, a_3, a_4\}, \{a_3\}$ and $\{a_1, a_3\}$. Then the collection of all $\mathbb{N}^{\underline{D}}$ -b-open sets are $\mathbb{N}^{\underline{D}}$ -bO(\tilde{U}_N, X_N) = $\{\tilde{U}_N, \emptyset_N, \{a_1\}, \{a_2, a_4\}, \{a_1, a_3\}, \{a_1, a_4\}, \{a_2, a_4\}\}$.

Theorem 3.3. A nano subset A_N of a NTS (\tilde{U}_N, τ_N) is $N_{\mathbb{P}}$ -b \mathbb{C} -open ($N_{\mathbb{P}}$ -b \mathbb{C} -OS) if and only if A_N is $N_{\mathbb{P}}$ -b-open and it is a union of $N_{\mathbb{P}}$ -closed sets ($N_{\mathbb{P}}$ -CS). That is $A_N = \bigcup \mathcal{F}_{\alpha}$, where A_N is $N_{\mathbb{P}}$ -b-open and \mathcal{F}_{α} is $N_{\mathbb{P}}$ -closed set for each α .

Proof: (\Rightarrow)

Let A_N be a Ne-bc-OS. Then A_N is Ne-b-open and for each $\varkappa \in A_N$, there is a Ne-CS \mathcal{F}_N such that $\varkappa \in \mathcal{F}_N \subset A_N$. Then we get $U \{\varkappa\}_{\varkappa \in A} = A_N \subset \mathcal{F}_N \subset A_N$. Thus $A_N = \bigcup \mathcal{F}_N$, where A_N is Ne-closed set for each $\varkappa \in A_N$. (\Leftarrow) Direct from the definition of Ne-bc-open set.

Remark 3.4. Every No-bc-OS of a NTS (\tilde{U}_N, τ_N) is No-b-open, but the converse is not true in general as shown by the following example.

Example 3.5. In example 3.2, $\{u_1\} \in \mathbb{N} \text{-bO}(\tilde{U}_N, X_N)$ but $\{u_1\} \notin \mathbb{N} \text{-b}\mathbb{C}\text{-O}(\tilde{U}_N, X_N)$ Hence $\{u_1\}$ is $\mathbb{N} \text{-b}\text{-open but not } \mathbb{N} \text{-b}\mathbb{C}\text{-O}$ set.

Theorem 3.6. An arbitrary union of No-bc-OS in (\tilde{U}_N, τ_N) is No-bc open.

Proof: Suppose $\{A_w : w \in \Delta\}$ is a family of $\mathbb{N}_{\mathbb{P}}$ -b \mathbb{C} -OS in NTS (\tilde{U}_N, τ_N) . Then A_w is $\mathbb{N}_{\mathbb{P}}$ -b-OS for every $w \in \Delta$. So, $\cup A_w$ is $\mathbb{N}_{\mathbb{P}}$ -b-OS. Let $\varkappa \in \cup \{A_w : w \in \Delta\}$. So $\varkappa \in A_w$ for some $w \in \Delta$. Since A_w is $\mathbb{N}_{\mathbb{P}}$ -bO for every w, there exist a $\mathbb{N}_{\mathbb{P}}$ -CS \mathcal{F}_N such that $\varkappa \in \mathcal{F}_N \subset A_w \subset \cup \{A_w : w \in \Delta\}$. So $\varkappa \in \mathcal{F}_N \subset \cup \{A_w : w \in \Delta\}$. Hence $\cup \{A_w : w \in \Delta\}$ is $\mathbb{N}_{\mathbb{P}}$ -b \mathbb{C} -OS.

Remark 3.7. The following example shows that the intersection of two No-bc-OS need not be No-bc-OS in NTS (\tilde{U}_N , τ_N).

Example 3.8. Consider example 2.2.2, $\{u_1, u_3\} \in \mathbb{N} \circ b \mathbb{C} \circ O(\tilde{U}_N, \tau_N)$ and $\{u_2, u_3, u_4\} \in \mathbb{N} \circ b \mathbb{C} \circ O(\tilde{U}_N, \tau_N)$ but $\{u_1, u_3\} \cap \{u_2, u_3, u_4\} \in \{u_3\} \notin \mathbb{N} \circ b \mathbb{C} \circ O(\tilde{U}_N, \tau_N)$.

Remark 3.9. From the above example, we note that the family of all No-bc-open subsets of a NTS (\tilde{U}_N, τ_N) is not a nano topology in general.

The following result gives a condition under which the family of all No-bc-open sets became a nano topology on \tilde{U}_N .

Theorem 3.10. If the collection of all \mathbb{N}_{\bullet} -b-open sets of a NTS (\tilde{U}_N, τ_N) is a nano topology(NT) on (\tilde{U}_N, τ_N) , then the collection of \mathbb{N}_{\bullet} -b \mathbb{C} -O sets is also a NT on (\tilde{U}_N, τ_N) .

Proof. Clearly ϕ_N and $\tilde{U}_N \in \mathbb{N}_{2}$ -bc-O(\tilde{U}_N, τ_N) and by theorem 3.6, the union of any family of \mathbb{N}_2 -bc-O sets is \mathbb{N}_2 -bc-O. Now let A_N and B_N be two \mathbb{N}_2 -bc-O sets. Then A_N and B_N are \mathbb{N}_2 -bO sets. Since \mathbb{N}_2 -bO(\tilde{U}_N, X_N) is a nano topology on (\tilde{U}_N, X_N), $A_N \cap B_N$ is \mathbb{N}_2 -bO. Let $X_N \in A_N \cap B_N$, then $X_N \in A_N$ and $X_N \in B_N$. So there exists two \mathbb{N}_2 -C sets F_N and E_N such that $X_N \in F_N \subset A_N$ and $X_N \in E_N \subset B_N$. This implies that $X_N \in F_N \cap E_N \subset A_N \cap B_N$. Since any intersection of \mathbb{N}_2 -C sets is \mathbb{N}_2 -C set. $F_N \cap E_N$ is \mathbb{N}_2 -C set. Thus $A_N \cap B_N$ is \mathbb{N}_2 -bc-O set.

Theorem 3.11. Every $\mathbb{N} - \theta OS$ in (\tilde{U}_N, τ_N) is $\mathbb{N} - b\mathbb{C} - OS$ in (\tilde{U}_N, τ_N) .

Proof. Let A_N be $\mathbb{N} \circ \partial OS$ in (\tilde{U}_N, τ_N) . Then for each $X_N \in A_N$, there exist $\mathbb{N} \circ OS$ G_N such that $X_N \in G_N \subset \mathbb{N} \circ cl$ $(G_N) \subset A_N$. So $\cup \{X_N\} \in \cup G_N \subset \cup \mathbb{N} \circ cl$ $(G_N) \subset A_N$. Then $A_N = \cup G_N$ which is $\mathbb{N} \circ OS$ and $A_N = \cup \mathbb{N} \circ cl$ (G_N) is a union of $\mathbb{N} \circ C$ sets. By theorem 2.2.3, A_N is $\mathbb{N} \circ b\mathbb{C} \circ OS$ in (\tilde{U}_N, τ_N) .

Remark 3.12. The converse of the above theorem need not be true.

Example 3.13. Let $\tilde{U}_N = \{u_1, u_2, u_3, u_4\}, \tilde{U}_N / \mathcal{R} = \{\{u_1\}, \{u_3\}, \{u_2, u_4\}\}\ \text{and}\ X_N = \{u_1, u_2\} \subset \tilde{U}_N$. Then NT $\tau_{\mathcal{R}}(X_N) = \{\tilde{U}_N, \emptyset_N, \{u_1\}, \{u_1, u_2, u_4\}, \{u_2, u_4\}\}, \tau_{\mathcal{R}}^c = \{\tilde{U}_N, \emptyset_N, \{u_2, u_3, u_4\}, \{u_3\}\ \text{and}\ \{u_1, u_3\}\}\ \text{Consider}\ A_N = \{u_1, u_3\}\ \text{which is}N_{\mathbb{P}} - b_{\mathbb{C}} - OS\ \text{but not}\ N_{\mathbb{P}} - \ThetaOS\ \text{in}\ (\tilde{U}_N, \tau_N).$

Theorem 3.14. Every No- θ S-OS in (\tilde{U}_N, τ_N) is No-bc-OS in (\tilde{U}_N, τ_N) .

Proof. Let A_N be \mathbb{N}_{\bullet} - θ S-OS in (\tilde{U}_N, τ_N) . Let G_N be \mathbb{N}_{\bullet} -SO such that for each $X_N \in A_N$, $X_N \in G_N \subset \mathbb{N}_{\bullet}$ -cl $(G_N) \subset A_N$. Then $A_N = \bigcup G_N$ and $A_N = \bigcup \mathbb{N}_{\bullet}$ -cl (G_N) is a union of \mathbb{N}_{\bullet} -C sets Hence A_N is \mathbb{N}_{\bullet} -bc-OS in (\tilde{U}_N, τ_N) . **Remark 3.15.** The converse of the above theorem need not be true.

Example 3.16. Let $\tilde{U}_N = \{ u_1, u_2, u_3, u_4 \}, \tilde{U}_N / \mathcal{R} = \{ \{ u_1, u_2 \}, \{ u_3 \}, \{ u_4 \} \}$ and $X_N = \{ u_2, u_3 \} \subset \tilde{U}_N$. Then NT $\tau_{\mathcal{R}}(X_N) = \{ \tilde{U}_N, \emptyset_N, \{ u_3 \}, \{ u_1, u_3, u_4 \}, \{ u_1, u_4 \} \}$. $\tau_{\mathcal{R}}^{\ c} = \{ \tilde{U}_N, \emptyset_N, \{ u_1, u_2, u_4 \}, \{ u_2 \}$ and $\{ u_2, u_3 \} \}$. Consider $A_N = \{ u_3 \}$ which is No-bC-OS but not No- θ S-OS in (\tilde{U}_N, τ_N) .

Theorem 3.17. Every No-bc-OS in (\tilde{U}_N, τ_N) is No- β -OS in (\tilde{U}_N, τ_N) .

Proof. Let A_N be \mathbb{N} -b \mathbb{C} -OS in (\tilde{U}_N, τ_N) . Then for any $X_N \in A_N \in \mathbb{N}$ -bO (\tilde{U}_N, X_N) , there exist a \mathbb{N} -CS \mathcal{H}_N in (\tilde{U}_N, τ_N) such that $\varkappa \in \mathcal{H}_N \subset A_N$. Since A_N is \mathbb{N} -b \mathbb{C} -OS, A_N is \mathbb{N} -bo such that $A_N \subset \mathbb{N}$ -cl $(\mathbb{N}$ -int $(A_N)) \cup \mathbb{N}$ -int $(\mathbb{N}$ -cl $(A_N))$. But A_N is union of nano C sets. Hence $A_N \subset \mathbb{N}$ -cl $(\mathbb{N}$ -int (\mathbb{N}_N) . Hence A_N is \mathbb{N} - β -OS in (\tilde{U}_N, τ_N) .

Remark 3.18. The converse of the above theorem need not be true.

Example 3.19. Let $\tilde{U}_N = \{ \mathfrak{a}_1, \mathfrak{a}_2, \mathfrak{a}_3, \mathfrak{a}_4 \}, \tilde{U}_N / \mathcal{R} = \{ \{ \mathfrak{a}_1 \}, \{ \mathfrak{a}_3 \}, \{ \mathfrak{a}_2, \mathfrak{a}_4 \} \}$ and $X_N = \{ \mathfrak{a}_1, \mathfrak{a}_2 \} \subset \tilde{U}_N$. Then NT $\tau_{\mathcal{R}}(X_N) = \{ \tilde{U}_N, \emptyset_N, \{ \mathfrak{a}_1 \}, \{ \mathfrak{a}_1, \mathfrak{a}_2, \mathfrak{a}_4 \}, \{ \mathfrak{a}_3 \}$ and $\{ \mathfrak{a}_1, \mathfrak{a}_3 \} \}$. Consider $A_N = \{ \tilde{U}_N, \emptyset_N, \{ \mathfrak{a}_1 \}, \{ \mathfrak{a}_2 \} \}$. Here A_N is $N \mathfrak{D} - \beta - OS$ but not $N \mathfrak{D} - \mathfrak{D} \mathfrak{C} - OS$ in (\tilde{U}_N, τ_N) .

Theorem 3.20. Every No-bc-OS in (\tilde{U}_N, τ_N) is No-b-OS in (\tilde{U}_N, τ_N) .

Proof. Let A_N be No-bC-OS in (\tilde{U}_N, τ_N) . By the definition of No-bC-OS, it is obvious that A_N is No-b-OS and it is a union of nano closed sets.

Remark 3.21. The following examples shows that No-bc- open sets and No-pre open sets are independent in (\tilde{U}_N, τ_N) .

Example 3.22. Let $\tilde{U}_N = \{ \mathfrak{a}_1, \mathfrak{a}_2, \mathfrak{a}_3, \mathfrak{a}_4 \}, \tilde{U}_N / \mathcal{R} = \{ \{ \mathfrak{a}_1 \}, \{ \mathfrak{a}_3 \}, \{ \mathfrak{a}_2, \mathfrak{a}_4 \} \}$ and $X_N = \{ \mathfrak{a}_1, \mathfrak{a}_2 \} \subset \tilde{U}_N$. Then NT $\tau_{\mathcal{R}}(X_N) = \{ \tilde{U}_N, \emptyset_N, \{ \mathfrak{a}_1, \mathfrak{a}_2, \mathfrak{a}_4 \}, \{ \mathfrak{a}_2, \mathfrak{a}_4 \} \}, \{ \mathfrak{a}_2, \mathfrak{a}_4 \}, \{ \mathfrak{a}_2, \mathfrak{a}_3, \mathfrak{a}_4 \}, \{ \mathfrak{a}_3 \}$ and $\{ \mathfrak{a}_1, \mathfrak{a}_3 \}$. Consider $A_N = \{ \tilde{U}_N, \emptyset_N, \{ \mathfrak{a}_1, \mathfrak{a}_2 \}, \{ \mathfrak{a}_1, \mathfrak{a}_2 \}$. Here A_N is No-pre open set but not No-bC-OS in (\tilde{U}_N, τ_N) .

Example 3.23. Let $\tilde{U}_N = \{ \mathfrak{a}_1, \mathfrak{a}_2, \mathfrak{a}_3, \mathfrak{a}_4 \}, \tilde{U}_N / \mathcal{R} = \{ \{ \mathfrak{a}_1, \mathfrak{a}_2 \}, \{ \mathfrak{a}_3 \}, \{ \mathfrak{a}_4 \} \}$ and $X_N = \{ \mathfrak{a}_2, \mathfrak{a}_3 \} \subset \tilde{U}_N$. Then NT $\tau_{\mathcal{R}}(X_N) = \{ \tilde{U}_N, \emptyset_N, \{ \mathfrak{a}_3 \}, \{ \mathfrak{a}_1, \mathfrak{a}_3, \mathfrak{a}_4 \}, \{ \mathfrak{a}_1, \mathfrak{a}_4 \} \}$. $\tau_{\mathcal{R}}^c = \{ \tilde{U}_N, \emptyset_N, \{ \mathfrak{a}_1, \mathfrak{a}_2, \mathfrak{a}_4 \}, \{ \mathfrak{a}_2 \}$ and $\{ \mathfrak{a}_2, \mathfrak{a}_3 \} \}$. Consider $A_N = \{ \{ \mathfrak{a}_2, \mathfrak{a}_3 \} \}$. Here A_N is No-bc-OS but not No-pre open in (\tilde{U}_N, τ_N) .

Theorem 3.24. Every No-bc-OS in (\tilde{U}_N, τ_N) is No-S-OS in (\tilde{U}_N, τ_N) .

Proof. Let A_N be \mathbb{N} -b \mathbb{C} -OS in (\tilde{U}_N, τ_N) . Since every \mathbb{N} -b \mathbb{C} -OS is \mathbb{N} -b open, A_N is \mathbb{N} -b- open. Therefore we have $A_N \subset \mathbb{N}$ -cl $(\mathbb{N}$ -int $(A_N)) \cup \mathbb{N}$ -int $(\mathbb{N}$ -cl (A_N)) and A_N is union of nano C sets. Hence $A_N \subset \mathbb{N}$ -cl $(\mathbb{N}$ -int (A_N)). Hence A_N is \mathbb{N} -semi-OS in (\tilde{U}_N, τ_N) .

Remark 3.25. The converse of the above theorem need not be true.

Example 3.26. Let $\tilde{U}_N = \{ u_1, u_2, u_3, u_4 \}, \tilde{U}_N / \mathcal{R} = \{ \{ u_1, u_2 \}, \{ u_3 \}, \{ u_4 \} \}$ and $X_N = \{ u_2, u_3 \} \subset \tilde{U}_N$. Then NT $\tau_{\mathcal{R}}(X_N) = \{ \tilde{U}_N, \emptyset_N, \{ u_3 \}, \{ u_1, u_3, u_4 \}, \{ u_1, u_4 \} \}$. $\mathcal{R}_{\mathcal{R}}^c = \{ \tilde{U}_N, \emptyset_N, \{ u_1, u_2, u_4 \}, \{ u_2 \}$ and $\{ u_2, u_3 \} \}$. Then NP-SO $(\tilde{U}_N, X_N) = \{ \tilde{U}_N, \emptyset_N, \{ u_3 \}, \{ u_1, u_4 \}, \{ u_2, u_3 \} \}$. Consider $A_N = \{ \{ u_1, u_4 \} \}$. Here A_N is No-SO but not No-bc-OS in (\tilde{U}_N, τ_N) .

Remark 3.27. The following examples shows that N₂-bc-open sets and N₂-regular open sets are independent in (\tilde{U}_N , τ_N).

Example 3.28. Let $\tilde{U}_N = \{ u_1, u_2, u_3, u_4 \}, \tilde{U}_N / \mathcal{R} = \{ \{ u_1 \}, \{ u_2, u_4 \}, \{ u_3 \} \}$ and $X_N = \{ u_1, u_2 \} \subset \tilde{U}_N$. Then NT $\tau_{\mathcal{R}}(X_N) = \{ \tilde{U}_N, \emptyset_N, \{ u_1 \}, \{ u_1, u_2, u_4 \}, \{ u_2, u_4 \} \}$. $\tau_{\mathcal{R}}^c = \{ \tilde{U}_N, \emptyset_N, \{ u_2, u_3, u_4 \}, \{ u_3 \}$ and $\{ u_1, u_3 \} \}$. Then N \underline{v} -RO (\tilde{U}_N, X_N) = $\{ \tilde{U}_N, \emptyset_N, \{ u_1 \}, \{ u_2, u_3 \} \}$. Consider $A_N = \{ \{ u_2, u_3 \} \}$. Here A_N is N \underline{v} -RO but not N \underline{v} -b \underline{c} -OS in (\tilde{U}_N, τ_N).

Example 3.29. Let $\tilde{U}_N = \{ u_1, u_2, u_3, u_4 \}, \tilde{U}_N / \mathcal{R} = \{ \{ u_1 \}, \{ u_2, u_3 \}, \{ u_4 \} \}$ and $X_N = \{ u_1, u_2 \} \subset \tilde{U}_N$. Then NT $\tau_{\mathcal{R}}(X_N) = \{ \tilde{U}_N, \emptyset_N, \{ u_1, u_2, u_3 \}, \{ u_1, u_2 \}, \{ u_1, u_3 \}, \{ u_2, u_3 \}, \{ u_2, u_3 \}, \{ u_1, u_3 \}, \{ u_1, u_2 \}, \{ u_1, u_3 \}, \{ u_1, u_2 \}, \{ u_1, u_3 \}, \{ u_1, u_3 \}, \{ u_1, u_2 \}, \{ u_1, u_2 \}, \{ u_1, u_3 \}, \{ u_1, u_3 \}, \{ u_1, u_2 \}, \{ u_1, u_2 \}, \{ u_1, u_3 \}, \{ u_1, u_2 \}, \{ u_1, u_2 \}, \{ u_1, u_2 \}, \{ u_1, u_3 \}, \{ u_1, u_2 \}, \{ u_1, u_2$

Remark 3.30. The following examples shows that No-bc-OS and No- α -OS are independent in (\tilde{U}_N, τ_N).

Example 3.31. Let $\tilde{U}_N = \{ u_1, u_2, u_3, u_4 \}, \tilde{U}_N / \mathcal{R} = \{ \{ u_1 \}, \{ u_3 \}, \{ u_2, u_4 \} \}$ and $X_N = \{ u_1, u_2 \} \subset \tilde{U}_N$. Then NT $\tau_{\mathcal{R}}(X_N) = \{ \tilde{U}_N, \emptyset_N, \{ u_1 \}, \{ u_1, u_2, u_4 \}, \{ u_2, u_4 \} \}, \tau_{\mathcal{R}}^c = \{ \tilde{U}_N, \emptyset_N, \{ u_2, u_3, u_4 \}, \{ u_3 \} \}$ and $\{ u_1, u_3 \} \}$. Then $\mathbb{N} \circ \alpha$ -OS $(\tilde{U}_N, X_N) = \{ \tilde{U}_N, \emptyset_N, \{ u_1 \}, \{ u_2, u_4 \}, \{ u_1, u_2, u_4 \} \}$. Consider $A_N = \{ u_2, u_4 \}$. Here A_N is $\mathbb{N} \circ \alpha$ -open set but not $\mathbb{N} \circ \text{-OS}$ in (\tilde{U}_N, τ_N) .

Example 3.32. Let $\tilde{U}_N = \{ u_1, u_2, u_3, u_4 \}, \tilde{U}_N / \mathcal{R} = \{ \{ u_1 \}, \{ u_4 \}, \{ u_2, u_3 \} \}$ and $X_N = \{ u_1, u_4 \} \subset \tilde{U}_N$. Then NT $\tau_{\mathcal{R}}(X_N) = \{ \tilde{U}_N, \phi_N, \{ u_1, u_4 \} \}, \tau_{\mathcal{R}}^c = \{ \tilde{U}_N, \phi_N, \{ u_2, u_3 \} \}$.Consider $A_N = \{ u_2, u_4 \}$. Here A_N is No-bC-OS but not No- α -open set in (\tilde{U}_N, τ_N) .

Remark 3.33. The following examples shows that N₂-bc-OS and N₂-OS are independent in (\tilde{U}_N, τ_N) .

Example 3.34. Let $\tilde{U}_N = \{ u_1, u_2, u_3, u_4 \}, \tilde{U}_N / \mathcal{R} = \{ \{ u_1 \}, \{ u_3 \}, \{ u_2, u_4 \} \}$ and $X_N = \{ u_1, u_2 \} \subset \tilde{U}_N$. Then NT $\tau_{\mathcal{R}}(X_N) = \{ \tilde{U}_N, \emptyset_N, \{ u_1 \}, \{ u_1, u_2, u_4 \}, \{ u_3, u_4 \}, \{ u_4, u_4 \}, \{$

Example 3.35. Let $\tilde{U}_N = \{\omega_1, \omega_2, \omega_3, \omega_4\}, \tilde{U}_N / \mathcal{R} = \{\{\omega_1\}, \{\omega_4\}, \{\omega_2, \omega_3\}\}$ and $X_N = \{\omega_1, \omega_2\} \subset \tilde{U}_N$. Then NT $\tau_{\mathcal{R}}(X_N) = \{\tilde{U}_N, \emptyset_N, \{\omega_1\}, \{\omega_2, \omega_3\}, \{\omega_1, \omega_2, \omega_3\}\}, \tau_{\mathcal{R}}^c = \{\tilde{U}_N, \emptyset_N, \{\omega_2, \omega_3, \omega_4\}\}$.Consider $A_N = \{\omega_1, \omega_3\}$. Here A_N is No-bc-OS but not No-open set in (\tilde{U}_N, τ_N) .

Remark 3.36. The following diagram shows the relationships of \mathbb{N} -b \mathbb{C} - open sets with some other nano open sets discussed in this section.

Figure 1 : Implications of №-bc- open set

where A _____B (resp.A _____B) represents A implies B (resp. A and B are independent). IV Nano bc-Closed Sets.

Definition 4.1. A nano subset A_N of a nano topological space (\tilde{U}_N, τ_N) is called nano bc - closed set (Ne-bc-CS) if the complement of A_N is Ne-bc-open set in (\tilde{U}_N, τ_N) . $Ne-BcCS(\tilde{U}_N, \tau_N)$ is the collection of all Ne-bc-CS in (\tilde{U}_N, τ_N) . **Example 4.2.** Let $\tilde{U}_N = \{a_1, a_2, a_3, a_4\}, \tilde{U}_N / \mathcal{R} = \{\{a_1\}, \{a_3\}, \{a_2, a_4\}\}$ and $X_N = \{a_1, a_2\} \subset \tilde{U}_N$. Then the Nano topology $Ne^T = \tau_{\mathcal{R}}(X_N) = \{\tilde{U}_N, \emptyset_N, \{a_1\}, \{a_1, a_2, a_4\}, \{a_2, a_4\}\}$. Then the nano Closed sets are $\tilde{U}_N, \emptyset_N, \{a_2, a_3, a_4\}, \{a_3\}$ and $\{a_1, a_3\}$. $Ne-bO(\tilde{U}_N, X_N) = \{\tilde{U}_N, \emptyset_N, \{a_1\}, \{a_2\}, \{a_4\}, \{a_1, a_2\}, \{a_1, a_3\}, \{a_1, a_4\}, \{a_2, a_4\}, \{a_1, a_2, a_4\}, \{a_2, a_3, a_4\}\}$ and $Ne-bcO(\tilde{U}_N, X_N) = \{\tilde{U}_N, \emptyset_N, \{a_2, a_3, a_4\}, \{a_1, a_3\}\}$. Consider $A_N = \{\{a_2, a_3, a_4\}\}$ which is Ne-bc-open set. The complement of A_N is Ne-bc-CS in (\tilde{U}_N, τ_N) .

Theorem 4.3. A nano set A_N of a NTS (\tilde{U}_N , τ_N) is No-bc-closed (No-bc-CS) if and only if A_N is No-b-closed and it is an intersection of No-open sets (No-OS). That is $A_N = \cap \mathcal{F}_\alpha$, where A_N is No-b-closed and \mathcal{F}_α is No-open set for each α . **Proof:** (\Rightarrow)

Let A_N be a No-bC-CS. Then A_N is No-b-closed and $A_N = No-cl (A_N)$. Since A_N is No-b-closed, No-int (No-cl (A_N)) \cap No-cl (No-int (A_N)) $\subset A_N$. For each $\varkappa \in A_N$, there is a No-OS \mathcal{F}_N such that $\varkappa \in \mathcal{F}_N \subset A_N$. Thus $A_N = \cap \mathcal{F}_N$. (\Leftarrow) Direct from the definition of No-bC-closed set.

Theorem 4.4. Let $\{A_w : w \in \Delta\}$ be a collection of Ne-bc closed sets in (\tilde{U}_N, τ_N) , then $\cap \{A_w : w \in \Delta\}$ is Ne-bc-CS. **Proof:** Let A_w be a Ne-bc closed set for each w in \tilde{U}_N . This implies U/ A_w is Ne-bc-open in \tilde{U}_N . Then by theorem 3.6, U(U/ A_w) is Ne-bc-open in \tilde{U}_N . Then U/ $\cap A_w$ is Ne-bc-open in \tilde{U}_N .

Remark 4.5. The union of two No-bc closed sets in (\tilde{U}_N, τ_N) need not be No-bc-CS.

Example 4.6. Let $\tilde{U}_N = \{u_1, u_2, u_3, u_4\}, \tilde{U}_N / \mathcal{R} = \{\{u_1\}, \{u_3\}, \{u_2, u_4\}\}$ and $X_N = \{u_1, u_2\} \subset \tilde{U}_N$. Then the Nano topology $\mathbb{N}^{\underline{v}^T} = \tau_{\mathcal{R}}(X_N) = \{\tilde{U}_N, \emptyset_N, \{u_1\}, \{u_1, u_2, u_4\}, \{u_2, u_4\}\}$. Then $\mathbb{N}^{\underline{v}}$ -CS are $\tilde{U}_N, \emptyset_N, \{u_2, u_3, u_4\}, \{u_3\}$ and $\{u_1, u_3\} \times \mathbb{D}^{\underline{v}}$ -b $\mathbb{C}C(\tilde{U}_N, X_N) = \{\tilde{U}_N, \emptyset_N, \{u_1\}, \{u_2, u_4\}\}$. Here $\{u_1\} \in \mathbb{N}^{\underline{v}}$ -b $\mathbb{C}C(\tilde{U}_N, X_N)$ and $\{u_2, u_4\} \in \mathbb{N}^{\underline{v}}$ -b $\mathbb{C}C(\tilde{U}_N, X_N)$. But $\{u_1\} \cup \{u_2, u_4\} \notin \mathbb{N}^{\underline{v}}$ -b $\mathbb{C}C(\tilde{U}_N, X_N)$.

Theorem 4.7. 1. Every $\mathbb{N} - \theta CS$ in (\tilde{U}_N, τ_N) is $\mathbb{N} - b\mathbb{C} - CS$ in (\tilde{U}_N, τ_N) .

- 2. Every No- θ S-CS in (\tilde{U}_N, τ_N) is No-bc-CS in (\tilde{U}_N, τ_N) .
- 3. Every No-bc-CS in (\tilde{U}_N, τ_N) is No- β -CS in (\tilde{U}_N, τ_N) .
- 4. Every No-bc-CS in (\tilde{U}_N, τ_N) is No-S-CS in (\tilde{U}_N, τ_N) .
- 5. Every No-bc-CS in (\tilde{U}_N, τ_N) is No-b-CS in (\tilde{U}_N, τ_N) .
- 6. No-bc- closed sets and No-pre closed sets are independent in (\tilde{U}_N, τ_N) .
- 7. No-bc-closed sets and No-regular closed sets are independent in (\tilde{U}_N, τ_N) .
- 8. No-bc-CS and No- α -CS are independent in (\tilde{U}_N, τ_N) .
- 9. No-bc-CS and No-CS are independent in (\tilde{U}_N, τ_N) .

Proof : Straight forward.

Remark 4.8. The converse of the above theorem need not be true as seen in the following examples .

Example 4.9. Let $\tilde{U}_N = \{ u_1, u_2, u_3, u_4 \}, \tilde{U}_N / \mathcal{R} = \{ \{ u_1 \}, \{ u_3 \}, \{ u_2, u_4 \} \}$ and $X_N = \{ u_1, u_2 \} \subset \tilde{U}_N$. Then NT $\tau_{\mathcal{R}}(X_N)$ $= \{\tilde{U}_N, \emptyset_N, \{u_1\}, \{u_1, u_2, u_4\}, \{u_2, u_4\}\}. \ \tau_{\mathcal{R}}{}^{\mathcal{C}} = \{\tilde{U}_N, \emptyset_N, \{u_2, u_3, u_4\}, \{u_3\} \ \text{and} \ \{u_1, u_3\}\}. Consider \ A_N = \{u_2, u_4\} \ \text{which is} N_{\underline{0}} = \{u_1, u_2, u_3, u_4\}.$ bc-CS but not $N_{\bullet}-\theta$ CS in (\tilde{U}_N, τ_N) .

Example 4.10. Let $\tilde{U}_N = \{\mathfrak{a}_1, \mathfrak{a}_2, \mathfrak{a}_3, \mathfrak{a}_4\}, \tilde{U}_N / \mathcal{R} = \{\{\mathfrak{a}_1, \mathfrak{a}_2\}, \{\mathfrak{a}_3\}, \{\mathfrak{a}_4\}\}$ and $X_N = \{\mathfrak{a}_2, \mathfrak{a}_3\} \subset \tilde{U}_N$. Then NT $\tau_{\mathcal{R}}(X_N)$ $= \{\tilde{U}_N, \emptyset_N, \{u_3\}, \{u_1, u_3, u_4\}, \{u_1, u_4\}\}. \ \tau_{\mathcal{R}}{}^{\mathcal{C}} = \{\tilde{U}_N, \emptyset_N, \{u_1, u_2, u_4\}, \{u_2\}, \{u_2, u_3\}\}. Consider A_N = \{u_1, u_2, u_4\} \text{ which is } N_2 - b\mathfrak{C}-CS$ but not \mathbb{N}_{θ} - θ S-CS in (\tilde{U}_N, τ_N).

Example 4.11. Let $\tilde{U}_N = \{ \mathfrak{a}_1, \mathfrak{a}_2, \mathfrak{a}_3, \mathfrak{a}_4 \}, \tilde{U}_N / \mathcal{R} = \{ \{ \mathfrak{a}_1 \}, \{ \mathfrak{a}_2 \}, \{ \mathfrak{a}_2, \mathfrak{a}_4 \} \}$ and $X_N = \{ \mathfrak{a}_1, \mathfrak{a}_2 \} \subset \tilde{U}_N$. Then NT $\tau_{\mathcal{R}}(X_N)$ $= \{\tilde{U}_N, \emptyset_N, \{ u_1 \}, \{ u_1, u_2, u_4 \}, \{ u_2, u_4 \} \}. \ \tau_{\mathcal{R}}{}^{\mathcal{C}} = \{\tilde{U}_N, \emptyset_N, \{ u_2, u_3, u_4 \}, \{ u_3 \} \ \text{and} \ \{ u_1, u_3 \} \}. Consider \ A_N = \{ \ \tilde{U}_N, \emptyset_N, \{ u_2, u_3, u_4 \}, \{ u_2, u_3, u_4 \}, \{ u_3 \} \}.$ \mathfrak{a}_4 , { \mathfrak{a}_1 , \mathfrak{a}_2 , \mathfrak{a}_4 }. Here A_N is $N \circ \beta$ -CS but not $N \circ -b \mathfrak{C}$ -CS in (\tilde{U}_N , τ_N).

Example 4.12. Let $\tilde{U}_N = \{ u_1, u_2, u_3, u_4 \}, \tilde{U}_N / \mathcal{R} = \{ \{ u_1, u_2 \}, \{ u_3 \}, \{ u_4 \} \}$ and $X_N = \{ u_2, u_3 \} \subset \tilde{U}_N$. Then NT $\tau_{\mathcal{R}}(X_N)$ $= \{\tilde{U}_{N}, \emptyset_{N}, \{u_{3}\}, \{u_{1}, u_{3}, u_{4}\}, \{u_{1}, u_{4}\}\}, \tau_{\mathcal{R}}{}^{c} = \{\tilde{U}_{N}, \emptyset_{N}, \{u_{1}, u_{2}, u_{4}\}, \{u_{2}\} \text{ and } \{u_{2}, u_{3}\}\}. \text{ Then } N \underline{\circ} - SCS(\tilde{U}_{N}, X_{N}) = \{\tilde{U}_{N}, \emptyset_{N}, \{u_{1}, u_{2}, u_{4}\}, \{u_{2}, u_{3}\}\}.$ $\mathbf{u}_{2},\mathbf{u}_{4}\},\{\mathbf{u}_{2},\mathbf{u}_{3}\},\{\mathbf{u}_{1},\mathbf{u}_{4}\}\}. \text{ Consider } A_{N} = \{\{\mathbf{u}_{1},\mathbf{u}_{4}\}\}. \text{ Here } A_{N} \text{ is} N\underline{\mathbf{v}}\text{-}SCS \text{ but not } N\underline{\mathbf{v}}\text{-}b\mathbb{C}\text{-}CS \text{ in } (\tilde{U}_{N},\tau_{N}).$

Example 4.13. Let $\tilde{U}_N = \{a_1, a_2, a_3, a_4\}, \tilde{U}_N / \mathcal{R} = \{\{a_1, a_2\}, \{a_3\}, \{a_4\}\}$ and $X_N = \{a_2, a_3\} \subset \tilde{U}_N$. Then NT $\tau_{\mathcal{R}}(X_N)$ $= \{\tilde{U}_N, \emptyset_N, \{u_3\}, \{u_1, u_3, u_4\}, \{u_1, u_4\}\}. \ \tau_{\mathcal{R}}{}^{\mathcal{C}} = \{\tilde{U}_N, \emptyset_N, \{u_1, u_2, u_4\}, \{u_2\} \ \text{and} \ \{u_2, u_3\}\}. \ \text{Consider} \ A_N = \{\{u_1, u_4\}\}. \ \text{Here} \ A_N = \{u_1, u_2, u_3\} \ \text{Consider} \ A_N = \{u_1, u_3, u_4\} \ \text{Consider} \ A_N = \{u_1, u_2, u_3\} \ \text{Consider} \ A_N = \{u_1, u_3, u_4\} \ \text{Consider} \ A_N = \{u_1, u_3, u_4\} \ \text{Consider} \ A_N = \{u_1, u_4\} \ \text{Consider} \ A_N = \{u_1, u_3, u_4\} \ \text{Consider} \ A_N = \{u_1, u_4$ is№-bCS but not №-bc-CS in (\tilde{U}_N, τ_N).

Example 4.14. Let $\tilde{U}_N = \{ u_1, u_2, u_3, u_4 \}, \tilde{U}_N / \mathcal{R} = \{ \{ u_1 \}, \{ u_3 \}, \{ u_2, u_4 \} \}$ and $X_N = \{ u_1, u_2 \} \subset \tilde{U}_N$. Then NT $\tau_{\mathcal{R}}(X_N)$ $= \{\tilde{U}_N, \emptyset_N, \{u_1\}, \{u_1, u_2, u_4\}, \{u_2, u_4\}\}, \tau_{\mathcal{R}}{}^{\mathcal{C}} = \{\tilde{U}_N, \emptyset_N, \{u_2, u_3, u_4\}, \{u_3\} \text{ and } \{u_1, u_3\}\}. Consider A_N = \{\tilde{U}_N, \emptyset_N, \{u_3, u_4\}, \{u_2, u_3, u_4\}, \{u_2, u_3, u_4\}, \{u_3, u_4\}, \{u_3, u_4\}, \{u_3, u_4\}, \{u_3, u_4\}, \{u_3, u_4\}, \{u_4, u_4\}, \{$ $[\mathfrak{Q}_3]$ Here A_N is \mathbb{N}_p -pre closed set but not \mathbb{N}_p -b \mathfrak{C} -CS in (\tilde{U}_N, τ_N) .

Example 4.15. Let $\tilde{U}_N = \{ a_1, a_2, a_3, a_4 \}, \tilde{U}_N / \mathcal{R} = \{ \{ a_1, a_2 \}, \{ a_3 \}, \{ a_4 \} \}$ and $X_N = \{ a_2, a_3 \} \subset \tilde{U}_N$. Then NT $\tau_{\mathcal{R}}(X_N)$ $= \{\tilde{U}_N, \emptyset_N, \{u_3\}, \{u_1, u_3, u_4\}, \{u_1, u_4\}\}. \ \tau_{\mathcal{R}}{}^{\mathcal{C}} = \{\tilde{U}_N, \emptyset_N, \{u_1, u_2, u_4\}, \{u_2\} \ \text{and} \ \{u_2, u_3\}\}. \text{Consider } A_N = \{\{u_1, u_4\}\}. \text{ Here } A_N \text{ is } \{u_1, u_2, u_3\} \ \text{Consider } A_N = \{\{u_1, u_4\}\}. \text{ Here } A_N \text{ is } \{u_1, u_2, u_3\} \ \text{Consider } A_N = \{\{u_1, u_4\}\}. \text{ Here } A_N \text{ is } \{u_1, u_2, u_3\} \ \text{Consider } A_N = \{\{u_1, u_4\}\}. \text{ Here } A_N \text{ is } \{u_1, u_3, u_4\} \ \text{Consider } A_N = \{\{u_1, u_4\}\}. \text{ Here } A_N \text{ is } \{u_1, u_2, u_4\} \ \text{Consider } A_N = \{\{u_1, u_4\}\}. \text{ Here } A_N \text{ is } \{u_1, u_3, u_4\} \ \text{Consider } A_N = \{\{u_1, u_4\}\}. \text{ Here } A_N \text{ is } \{u_1, u_4\} \ \text{Consider } A_N = \{u_1, u_4\} \ \text{Consider } A_N \ \text{$ №-bc-CS but not №-pre closed set.

Example 4.16. Let $\tilde{U}_N = \{u_1, u_2, u_3, u_4\}, \tilde{U}_N / \mathcal{R} = \{\{u_1\}, \{u_2, u_4\}, \{u_3\}\}$ and $X_N = \{u_1, u_2\} \subset \tilde{U}_N$. Then NT $\tau_{\mathcal{R}}(X_N)$ $=\{\tilde{U}_{N}, \phi_{N}, \{\alpha_{1}\}, \{\alpha_{1}, \alpha_{2}, \alpha_{4}\}, \{\alpha_{2}, \alpha_{4}\}\}. \tau_{\mathcal{R}}{}^{c} = \{\tilde{U}_{N}, \phi_{N}, \{\alpha_{2}, \alpha_{3}, \alpha_{4}\}, \{\alpha_{3}\} \text{ and } \{\alpha_{1}, \alpha_{3}\}\}. \text{Then } \mathbb{N}_{2}-\text{RCS}(\tilde{U}_{N}, X_{N}) = \{\tilde{U}_{N}, \phi_{N}, \{\alpha_{2}, \alpha_{3}, \alpha_{4}\}, \{\alpha_{3}, \alpha_{3}\}, \{\alpha_{3},$ $@_3, @_4\}, \{@_1, @_4\}\}. \text{ Consider } A_N = \{\{@_1, @_4\}\}. \text{ Here } A_N \text{ is } N_{\underline{\circ}}-RCS \text{ but not } N_{\underline{\circ}}-b\mathbb{C}-CS \text{ in } (\tilde{U}_N, \tau_N). \\$

Example 4.17. Let $\tilde{U}_N = \{ u_1, u_2, u_3, u_4 \}, \tilde{U}_N / \mathcal{R} = \{ \{ u_1 \}, \{ u_2, u_3 \}, \{ u_4 \} \}$ and $X_N = \{ u_1, u_2 \} \subset \tilde{U}_N$. Then NT $\tau_{\mathcal{R}}(X_N)$ $= \{\tilde{U}_N, \ \emptyset_N, \ \{\omega_1\}, \{\omega_1, \omega_2, \omega_3\}, \{\omega_2, \omega_3\}\}, \ \tau_{\mathcal{R}}{}^{\mathcal{C}} = \{\tilde{U}_N, \ \emptyset_N, \ \{\omega_2, \omega_3, \omega_4\}, \{\omega_4\} \ and \ \{\omega_1, \ \omega_4\}\}. Then \ N_{\underline{\circ}} - b \ \mathbb{C} \ -CS \ (\tilde{U}_N, \ X_N) = \{\tilde{U}_N, \ \mathbb{C} \ \mathbb{C$ ={ \tilde{U}_N , \emptyset_N , { ω_2 , ω_4 }, { ω_1 }}. Consider $A_N =$ {{ ω_2 , ω_4 }}. Here A_N is No-bc-CS but not No-RCS in (\tilde{U}_N , τ_N).

Example 4.18. Let $\tilde{U}_N = \{ \mathfrak{a}_1, \mathfrak{a}_2, \mathfrak{a}_3, \mathfrak{a}_4 \}, \tilde{U}_N / \mathcal{R} = \{ \{ \mathfrak{a}_1 \}, \{ \mathfrak{a}_3 \}, \{ \mathfrak{a}_2, \mathfrak{a}_4 \} \}$ and $X_N = \{ \mathfrak{a}_1, \mathfrak{a}_2 \} \subset \tilde{U}_N$. Then NT $\tau_{\mathcal{R}}(X_N)$ $= \{\tilde{U}_{N}, \emptyset_{N}, \{u_{1}\}, \{u_{1}, u_{2}, u_{4}\}, \{u_{2}, u_{4}\}\}, \tau_{\mathcal{R}}{}^{c} = \{\tilde{U}_{N}, \emptyset_{N}, \{u_{2}, u_{3}, u_{4}\}, \{u_{3}\} \text{ and } \{u_{1}, u_{3}\}\}. \text{Then } N \underline{\circ} - \alpha - CS \ (\tilde{U}_{N}, X_{N}) = \{\tilde{U}_{N}, \emptyset_{N}, \{u_{2}, u_{3}, u_{4}\}, \{u_{3}\}, u_{3}\} + u_{3} + u$ $(a_3, a_4), \{a_1, a_3\}, \{a_3\}\}$. Consider $A_N =$

 $\{\mathfrak{a}_1,\mathfrak{a}_3\}$. Here A_N is $\mathbb{N}_{-}\alpha$ -closed set but not $\mathbb{N}_{-}b\mathbb{C}$ -CS in (\tilde{U}_N, τ_N) .

Example 4.19. Let $\tilde{U}_N = \{u_1, u_2, u_3, u_4\}, \tilde{U}_N / \mathcal{R} = \{\{u_1\}, \{u_4\}, \{u_2, u_3\}\}$ and $X_N = \{u_1, u_4\} \subset \tilde{U}_N$. Then NT $\tau_{\mathcal{R}}(X_N)$ $=\{\tilde{U}_N, \emptyset_N, \{u_1, u_4\}\}. \tau_{\mathcal{R}}^c = \{\tilde{U}_N, \emptyset_N, \{u_2, u_3\}\}. \text{Consider } A_N = \{u_1, u_3\}. \text{ Here } A_N \text{ is } N_{\mathbb{P}}-b\mathbb{C}\text{-}CS \text{ but not } N_{\mathbb{P}}-\alpha\text{-}closed \text{ set in } A_N = \{u_1, u_3\}. \text{ Here } A_N = \{u_1, u_3\}. \text{ Here } A_N = \{u_1, u_3\}. \text{ Here } A_N = \{u_1, u_3\}. \text{ but not } N_{\mathbb{P}}-\alpha\text{-}closed \text{ set in } A_N = \{u_1, u_3\}. \text{ but not } N_{\mathbb{P}}-\alpha\text{-}closed \text{ set in } A_N = \{u_1, u_3\}. \text{ but not } N_{\mathbb{P}}-\alpha\text{-}closed \text{ set in } A_N = \{u_1, u_3\}. \text{ but not } N_{\mathbb{P}}-\alpha\text{-}closed \text{ set in } A_N = \{u_1, u_3\}. \text{ but not } N_{\mathbb{P}}-\alpha\text{-}closed \text{ set in } A_N = \{u_1, u_3\}. \text{ but not } N_{\mathbb{P}}-\alpha\text{-}closed \text{ set in } A_N = \{u_1, u_3\}. \text{ but not } N_{\mathbb{P}}-\alpha\text{-}closed \text{ set in } A_N = \{u_1, u_3\}. \text{ but not } N_{\mathbb{P}}-\alpha\text{-}closed \text{ set in } A_N = \{u_1, u_3\}. \text{ but not } N_{\mathbb{P}}-\alpha\text{-}closed \text{ set in } A_N = \{u_1, u_3\}. \text{ but not } N_{\mathbb{P}}-\alpha\text{-}closed \text{ set in } A_N = \{u_1, u_3\}. \text{ but not } N_{\mathbb{P}}-\alpha\text{-}closed \text{ set in } A_N = \{u_1, u_3\}. \text{ but not } N_{\mathbb{P}}-\alpha\text{-}closed \text{ set in } A_N = \{u_1, u_3\}. \text{ but not } N_{\mathbb{P}}-\alpha\text{-}closed \text{ set in } A_N = \{u_1, u_3\}. \text{ but not } N_{\mathbb{P}}-\alpha\text{-}closed \text{ set in } A_N = \{u_1, u_3\}. \text{ but not } N_{\mathbb{P}}-\alpha\text{-}closed \text{ set in } A_N = \{u_1, u_3\}. \text{ but not } N_{\mathbb{P}}-\alpha\text{-}closed \text{ set in } A_N = \{u_1, u_3\}. \text{ but not } N_{\mathbb{P}}-\alpha\text{-}closed \text{ set in } A_N = \{u_1, u_3\}. \text{ but not } N_{\mathbb{P}}-\alpha\text{-}closed \text{ set in } A_N = \{u_1, u_3\}. \text{ but not } N_{\mathbb{P}}-\alpha\text{-}closed \text{ set in } A_N = \{u_1, u_3\}. \text{ but not } N_{\mathbb{P}}-\alpha\text{-}closed \text{ set in } A_N = \{u_1, u_3\}. \text{ but not } N_{\mathbb{P}}-\alpha\text{-}closed \text{ set in } A_N = \{u_1, u_3\}. \text{ but not } N_{\mathbb{P}}-\alpha\text{-}closed \text{ set in } A_N = \{u_1, u_3\}. \text{ but not } N_{\mathbb{P}}-\alpha\text{-}closed \text{ set in } A_N = \{u_1, u_3\}. \text{ but not } N_{\mathbb{P}}-\alpha\text{-}closed \text{ set in } A_N = \{u_1, u_3\}. \text{ but not } N_{\mathbb{P}}-\alpha\text{-}closed \text{ set in } A_N = \{u_1, u_3\}. \text{ but not } N_{\mathbb{P}}-\alpha\text{-}closed \text{ set in } A_N = \{u_1, u_3\}. \text{ but not } N_{\mathbb{P}}-\alpha\text{-}closed \text{ set in } A_N = \{u_1, u_3\}. \text{ but not } N_{\mathbb{P}}-\alpha\text{ (\tilde{U}_N, \tau_N).$

Example 4.20. Let $\tilde{U}_N = \{ u_1, u_2, u_3, u_4 \}, \tilde{U}_N / \mathcal{R} = \{ \{ u_1 \}, \{ u_3 \}, \{ u_2, u_4 \} \}$ and $X_N = \{ u_1, u_2 \} \subset \tilde{U}_N$. Then NT $\tau_{\mathcal{R}}(X_N) = \{ \tilde{U}_N, \emptyset_N, u_3 \}$ $\{\mathfrak{a}_1\}, \{\mathfrak{a}_1, \mathfrak{a}_2, \mathfrak{a}_4\}, \{\mathfrak{a}_2, \mathfrak{a}_4\}\}, \tau_{\mathcal{R}}{}^{\mathcal{C}} = \{\tilde{U}_N, \emptyset_N, \{\mathfrak{a}_2, \mathfrak{a}_3, \mathfrak{a}_4\}, \{\mathfrak{a}_3\} \text{ and } \{\mathfrak{a}_1, \mathfrak{a}_3\}\}. \text{ Consider } A_N = \{\mathfrak{a}_3\}. \text{ Here } A_N \text{ is } N_2\text{-closed set but } \{\mathfrak{a}_1, \mathfrak{a}_2, \mathfrak{a}_3, \mathfrak{a}_4\}, \{\mathfrak{a}_3\} \text{ and } \{\mathfrak{a}_1, \mathfrak{a}_3\}\}.$ not $\mathbb{N}_{-b}\mathbb{C}$ -CS in (\tilde{U}_N, τ_N) .

Example 4.21. Let $\tilde{U}_N = \{ a_1, a_2, a_3, a_4 \}, \tilde{U}_N / \mathcal{R} = \{ \{a_1\}, \{a_4\}, \{a_2, a_3\} \}$ and $X_N = \{a_1, a_2\} \subset \tilde{U}_N$. Then NT $\tau_{\mathcal{R}}(X_N) = \{\tilde{U}_N, \phi_N, a_1, a_2\} \subset \tilde{U}_N$. $\{\mathfrak{a}_1\}, \{\mathfrak{a}_2, \mathfrak{a}_3\}, \{\mathfrak{a}_1, \mathfrak{a}_2, \mathfrak{a}_3\}\}. \tau_{\mathcal{R}}{}^{c} = \{\tilde{U}_N, \emptyset_N, \{\mathfrak{a}_2, \mathfrak{a}_3, \mathfrak{a}_4\}\}. Consider A_N = \{\mathfrak{a}_2, \mathfrak{a}_3\}. Here A_N \text{ is } \mathbb{N} \text{-b} \mathbb{C}\text{-} CS \text{ but not } \mathbb{N} \text{-closed set } \mathbb{C} = \{\tilde{U}_N, \mathfrak{a}_N, \mathfrak{a}_N,$ in (\tilde{U}_N, τ_N) .

REFERENCES

1. Andrijevic."On b-open sets in topological spaces", Math.Vesnik, 48(1), (1996), 59-64.

- 2. A.S.Mashhour, ME.Abd El Mousef and S.N.El peeb, "On Precontinuous and weak precontinuous mappings", proc.Math & Phys.Soc., Egypt. 53 (1982), 47-53.
- 3. A.Vadivel, J.Sathyaraj, M.Sujatha & M.Angayarkarasi, "Generalizations of nano θ closed sets in nano topological spaces", Journal of information and computational science, 9,(11), -2019.
- 4. C.Indirani, M.Parimala&S,Jafari, "On nano b -open sets in nano topological spaces ", Jourdan journal of mathematics and statistics (IJMS) 9(3),2016,173-184.
- 5. D.A.Mary and Arockiarani .A, "On semi pre open sets in nano Topological spaces," Math.Sci.Int. Res.Jnl, 3(2014),771-773.
- 6. H.Z.Ibhrahim, "Bc -open sets in topological spaces", Advances in pure mathematics, 2013, 3, 34-40.
- 7. K.F.Porter, "Regular open sets in topology", Int.Jour.ofMath.and Math. Sci.,2(1996),299-302.
- 8. M.LellisThivagar and C.Richard, "On nano forms of weakly open sets", Int.Jour.of Math and stat.invent. 1(1),2013,31-37.
- 9. N.Levine, "Semi open sets and semi continuity in Topological Spaces", Amer. Math.Monthly, 70(1963), 36-41.
- 10. P.Sathishmohan, V,Rajendran, P.K.Dhanasekaran and Brindha.S., "Further properties of nano pre T_0 space, nano pre T_1 space and nano pre T_2 spaces", Malaya Journal of Mathematik, 7,(1),2019, 34-38.
- 11. Raad Aziz Al-Abdulla, Ruaa Muslim Abed, "On Bc open sets in Topological Spaces", International Journal of Science and Research, 3,(10), (2014).
- 12. R.T.Nachiyar and K.Bhuvaneswari, "On nano generalized A closed sets & nano A generalized closed sets in nano topological spaces, International Journal of Engineering Trends and Technology " (IJETT), 6(13)(2014),257-260.
- 13. S.B. Shalini and K.Indirani, "Nano generalized semipro closed sets and nano semi pre generalized closed sets in nano topological spaces, International Journal of Physics and Mathematics", 5(3)(2005),27-31.