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Abstract 

 

Big Tech companies have spent the last decade designing scalable, elastic, and resilient cloud infrastructures to support 

their business applications. However, the emergence of machine learning as a service-area-in-silico and the urgent need 

for operationalizing compliance in highly regulated industries have required them to invest an additional effort in 

designing cloud-native infrastructures to support ML workloads. These infrastructures must provide the required elasticity 

and efficiency to support high-performance, fault-tolerant, blameless, and compliant ML pipelines. The principled 

redesign of cloud architectures to overcome the challenges of serving ML workloads at scale is essential for accelerating 

their maturity; however, it has yet to start in earnest. This paper contributes a framework to guide the design of cloud-
native infrastructures for ML workloads that links high-level design requirements with architectural dimensions. The 

framework enables architecture teams to compose the design of cloud-native architectures for ML workloads by exposing 

the architectural trade-offs involved in configuring elasticity, performance, fault-tolerance, compliance, cost, and risk for 

ML workloads. We describe the design framework properties using concrete examples that optimize for elasticity, cost, 

and risk. Finally, we argue that the principled design of cloud architectures for ML workloads is paramount for accelerating 

their further adoption and maturity in enterprise environments. 
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1. Introduction 

 

Machine Learning (ML) has become a critical component of many products and services. Emerging applications in natural 

language processing, computer vision, healthcare and life sciences, self-driving, energy, and finance are demonstrating 

the value and impact of machine learning. These technologies hold the promise of economic growth across multiple sectors 

in addition to the growth of dedicated AI technology companies. Various organizations are investing in the development 

of internal machine-learning capabilities. Others are forming alliances with specialists to deliver advanced augmented 

products and services. Such advancements require the delivery of accurate models made in production scalable releases, 

constantly monitored, and safely retrained. This demands resources, processes, and mindsets that are scarce in traditional 
software development. Unlike detailed requirement documents, standardized steps, fixed development cycles, and static 

software that rarely changes, the ML development process undergoes design decisions, changes rapidly, revises the 

solutions, and deploys software that is never finished. The cycle of solving a problem using ML is unpredictable, resource-

intensive, and costly. Such costs are disproportionate when mistakes are made or retraining is required often, either of 

which is exacerbated by a flawed or poorly executed ML process. 

It is widely accepted that good data is the most important element in obtaining, deploying, and maintaining a production-

ready ML system. Advanced solutions depend on the collection, preprocessing, storage, systematic recombination, and 

sharing of high-quality data that correctly represents the problem at hand. The shape and size of the training data combined 

with the complexity and depth of the ML algorithm will define a model’s performance in production. Pre- and post-

production decision-making requires timely transformation of data into model-specific insights. 

 

1.1. Purpose and Scope of the Document 
Designing and deploying cloud-native learning systems is challenging, as they need to ingest, analyze, retrain, and infer 

from large amounts of dynamic data while adhering to strict performance, fault tolerance, and compliance requirements. 

When deploying a cloud-native AI infrastructure, organizations face tough design choices, including what platform to 

deploy on, how to partition learning and pipeline components, what and how much user-bootstrapped data to use for 

retraining, how to align dynamic inference demand and finite resources, and how to ensure the compliance of pipelines 

that can learn from sensitive data over time. In practice, organizations usually rely on manual actions or best-effort 
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heuristics to address these design issues. This can lead to pipelines that are not optimal in terms of capital and operational 

costs and a long time to market and are not guaranteed to be fault tolerant or compliant over time. 

 

 
Fig 1: Cloud Native Architecture 

 

In this document, we propose an extensible framework that allows organizations to implement cloud-native infrastructure 

for learning pipelines that are optimal, fault-tolerant, and compliant over time. We first present a set of architectural design 

decisions that make Machine Learning as a Service infrastructure functionally complete. We then present the specification 

of a constrained optimization problem that can be used to select a high-performance, cost-effective design for the 

infrastructure, and a controller that can implement the design over time. These two components can be used to create and 

manage infrastructure for different classes of learning pipelines, such as batch-deployed pipelines for image search and 

online-deployed pipelines for content recommendation. In addition, we present a self-service application programming 
interface for organizations to provision their infrastructure needs easily, and describe design trade-offs and cost analysis 

considerations. Finally, we instantiate these components in a cloud-native infrastructure built around a cloud edge and 

demonstrate its validity and generality using accelerators such as GPUs and FPGAs. 

 

2. Understanding Cloud-Native Architecture 

 

A cloud-native system is built from the ground up to take full advantage of the resources and capabilities exposed by cloud 

service providers. Cloud-native systems are designed to exploit the scalable, abundant, and flexible resources available 

from cloud providers. Ideally, cloud-native systems decouple a user’s workloads from the underlying hardware and 

physical location, so that the cloud provider’s orchestration, automation, and scheduling systems can work their magic. In 

their purest forms, cloud-native systems make use of serverless functions, dynamic scaling, rich ecosystems, and 
microservices. Compared to traditional on-premise systems, the primary improvements users are seeking from cloud-

native systems are significant reductions in operational burden through automation and standardization of often disparate 

systems. The greater abstractions of cloud-native systems reduce the cognitive load for users; however, cloud-native 

systems come with considerable trade-offs. Users cede control over details such as security, monitoring, data locality, and 

performance to the cloud provider’s services, which are designed to be configuration-driven. A significant decision in the 

cloud-native world becomes which service to use and how to configure it. Cloud-native architectures have several major 

components: Infrastructure, Deployment Manageability, Service Reliability, Configuration, and Ecosystem. Infrastructure 

refers to how compute, memory, network, and storage resources are provided and abstracted. Deployment Manageability 

encompasses all logging, monitoring, alerting, and patching for every service in the system. Service Reliability focuses 

on ensuring that the services deliver predictable performance under variable load conditions. Configuration specifies how 

each service is customized in line with applications running on the system. Finally, Ecosystem refers to the grouping of 

services from one or more providers for implementation in a cloud-native application. 
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Equation 1 : Pipeline Throughput Performance (PTP): 

 

2.1. Definition and Characteristics 

The term "cloud-native" architecture has credibility in the software development industry, and it refers to concepts, 

patterns, techniques, and frameworks that help to implement highly efficient, scalable, available, maintainable, and 

evolvable microservice-based applications in the cloud. What advanced the talks on the "cloud-native" paradigm was a 

white paper with the same name published by leaders of the popular container orchestration ecosystem based on 

Kubernetes and containers in general. In it, it is stated that the "cloud-native" is an approach to build and run applications 
that fully exploit the advantages of the cloud computing delivery model. 

Cloud-native applications are built as a set of microservices, designed for repetitive deployment and automated testing, 

built and deployed as a raw executable, automated deployed and operated based on container technologies and allow 

abstraction of the underlying infrastructure where they run as well as resource elasticity and horizontal scaling. Intended 

for intensive use of cloud resources, cloud-native applications are also designed to embrace failures, be self-healing, offer 

low-latency and append-only data access patterns, reduce the costs of non-volatile cloud storage service by managing the 

lifetime of any serialized data, be observable, tolerant of third-party service unavailability and usually distributed across 

multiple cloud regions, and be fault-tolerant of central service unavailability for a short time window. 

 

2.2. Benefits of Cloud-Native Approaches 

Cloud-native architectures have been formulated based on lessons learned from years of experience running Internet-scale 
services, trends affecting the behavior of operational workloads, technological advances, and fostering an active, growing 

community around open-source projects that address common problems. The benefits of the cloud-native approach can 

be listed in three groups of categories all of which contribute to a faster development delivery cycle: Automatable, 

Observable, and Elastic. The first of these reduces developer toil by making the software easier to manage, relieving 

operations of busywork. The second provides rich telemetry that makes it easy to monitor the behavior of the application 

and deduce system health and state. The third enables organizations to serve fluctuating requirements efficiently, freeing 

capacity during times of low demand while having sufficient resources available to meet bursts of demand. 

The automatable principle consists of making operations for the application that can be expressed as code with low 

overhead. The operability is a principle that supports collaboration between development and operations teams: By 

embedding operability functions in the services it is possible to keep provided functions in sync with the current needs. 

Monitoring the system behavior is the purpose of incorporating observability in the architecture. Monitoring capabilities 

have strict requirements regarding the timing of the events and access methods demanded and, if not attended, might lose 
telemetry data that could compromise system diagnostics. The system behavior can be monitored everywhere but, 

preferentially during normal operation, the diagnostics should be collected through the embedded operations to minimize 

infringing on service execution. Monitoring data should be retained in a time-series database to ease anomaly detection 

routines. 

 

3. Machine Learning Pipelines Overview 

 

Real-world ML projects generally host many models that are independently developed with various pipelines, tools, and 

infrastructures. Developing ML systems at scale without a standard architecture is crucial to maintain. In the absence of 

architecture, experimental models graduate into production more or less by serendipity. When inspired researchers build 

exceptional models that deliver real business value, scaling, and product ionization are then catastrophic to do and prone 
to failure. Revisiting and updating ML models that have been retired from production becomes difficult. In such conditions 

and arguments, it becomes generally desired to have a standard reference ML architecture, such that the transition from 

small exploratory or academic projects to production quality and critical online system can be done more smoothly, and 

a set of general tools, pipelines, and infrastructures capable of processing a wide range of ML tasks and domains. Many 

key components are present in more or less models: Data shard ingestion, pre-processing, feature generation, model 

training and scoring, evaluation and test, model deployment, and pipeline orchestration, among many others. The pipeline 

composition and connections between blocks vary among and with tools; many also have been designed to solve a specific 



Journal for Re Attach Therapy and Developmental Diversities 

eISSN: 2589-7799 
2023 December; 6 (10s)(2): 1977-1991 

 

 

 

1980   https://jrtdd.com 

type of ML problems and in those cases present few options. These generalized inspiring tools make considerable research 

speed since models can be easily built, tested, and located at initial phases. 

 

 
Fig 2 : Machine Learning Pipeline Deployment 

 

3.1. Components of Machine Learning Pipelines 
Machine learning (ML) pipelines consist of multiple components that are responsible for the data's journey from an initial 

state until it serves the purpose of the business application. Similar to a data processing pipeline, a typical ML pipeline 

takes generic data of a certain type as its input, commonly in the form of a storage bucket, and produces domain-specific 

data. Nonetheless, in a typical ML pipeline, data preparation is divided into a set of different intermediate processes that 

transform the original data until it produces the final product, a trained model that can be queried using other data. Typical 

components of an ML pipeline include: data sourcing, data ingestion, data preparation, feature engineering, model 

training, model evaluation, and model deployment. 

Data sourcing is responsible for identifying business events that create the need for an ML product. It creates the closure 

for products that need and consume the ML product. It communicates the need for the product with the stakeholders and 

aligns it with other business products. It objectifies the model’s concept, decides the objective type, and derives the ML 

work unit that is the smallest representation of the business scenario per the input data. The ML work unit defines how 
business entities interact with each other. It creates the closure so that the ML model output product is a scaled-down 

version of the output product. Data ingestion pulls the domain's data into the current workflow. It is responsible for 

connecting with data sources and extracting and loading the appropriate data for the current scenario. There are many 

forms of domain-modeling data. 

 

3.2. Challenges in Traditional ML Pipelines 

Traditionally, deployed ML systems were not designed to be continuously retrained or updated. Due to this, it was 

challenging to adapt ML models to changes in data distribution and possibly underlying assumptions associated with the 

model, leading to a specific class of model failure not addressed by software tooling. In addition, model retraining was a 

manual effort, often with implicit or explicit additional coordination between ML scientists and developers, which raises 

friction in development and increases the time to model updates. It is considered a good practice to separate model 

retraining and serving functionality and expose ML serving as a microservice so models can be retrained as needed. This 
would move model retraining into the DevOps domain, allowing data scientists to focus on model development. However, 

managing updates in a multi-model environment to ensure that old versions of models are still functional while lowering 

the burden on developers to have to manage model input and output schemas, is another source of friction that needs 

tooling solutions. 

Another issue with traditional systems is that they often rely on complex model architecture definitions, from selecting 

appropriate model hyperparameters to assembling models from gluing together complex infrastructure dependencies like 

batch pipelines ingesting data into the model, to serving infrastructure. While frameworks attempt to encapsulate this 

complexity, the increasing need for fast experimentation in research has led several practitioners to use lower-level tools 

to build and leverage scaffolds for fast prototyping. These complex architecture definitions lead to issues in model 

explainability due to increased black-box behavior, and it may also raise questions concerning bias present in the model 

due to the model architecture selection. 
 

4. Designing High-Performance ML Pipelines 

 

The performance of machine learning pipelines is often questioned, and many works label certain pipelines only as proof 

of concept designs. There are several reasons for such inference in the ML domain. The overall time complexity of many 

ML models is not well defined and is more likely dependent on the particulars of the data distribution, and subroutines 

called during execution. The time complexity of several pipelines is not governed by the time complexity of the ML model 

called in the pipeline, but rather by subroutines such as data ingestion or data preparation, which again often depend on 

the structure of the data. Designing and deploying performant pipelines is hard for several reasons - in addition to unknown 

latencies for most subroutines, the target metrics are driven by non-ML pipeline costs such as latency or throughput 

requirements, pricing impacts, and the characteristics of the pipeline calling environment. 
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Because performance design can be done at many levels concerning a pipeline, how do we evaluate the quality of such a 

design? ML pipelines don’t exist in isolation, and the performance of pipelines thus depends heavily on the environment 

within which they are deployed. The user wants certain metrics - such as cost-driven or latency-driven quality for computer 

vision-related pipelines, and the respective scale at which the pipeline is evaluated, or deployed, set a lower bound on 

these metrics. The design of the pipeline could be evaluated based on these metrics. However, the choice of pipeline 

design is a very old problem, and there are existing works that also propose design metrics that relate to the design quality. 
However, all those works are related to one type of pipeline flavor. 

 

 
Fig 3 : High-Performance Computing Data Centers 

 

4.1. Performance Metrics 

All computation processes take time to execute and need resources, e.g., CPU cycles, memory bandwidth, and power 

dissipation. However, few works consider performance when designing Machine Learning (ML) pipelines. Even when 

they do, the focus usually is on a reduced set of critical components. For example, in conventional data-centric works, the 
dataset characteristics affect the training process only through the input shape, and their performance considerations are 

confined by the data loading time. 

There is a myriad of metrics to measure performance, from a simple wall clock that tells how long a command took to 

finish to more complex modeling frameworks capable of predicting their execution time given the context of diverse 

workloads and systems. The former are the most common, although they can lead to misinterpretation of the performance 

if poorly used. For instance, the CPU time taken for a specific ML can vary significantly from one run to another, and 

more importantly, using this metric does not capture the time that a user would perceive when running different workloads. 

To avoid these pitfalls, we recommend using a small breadth of metrics that capture the multiple aspects of the 

performance. For example, we recommend measuring the throughput and the latency, as these are what users would 

perceive and are commonly used in the literature. In addition, we recommend measuring the power consumption to 

understand whether an ML pipeline can run in a constrained environment. Finally, although seldom mentioned in the 
literature, power consumption also influences the wall clock time. In particular, longer-running jobs consume more power 

than shorter ones at high loads. 

 

4.2. Optimization Techniques 

The idea of automating infrastructure design decisions is appealing because it reduces the burden on architecting pipelines 

as well as reduces the time from concept to production for organizations adopting ML. The amount of hyperparameter 

exploration required in this model, coupled with an accelerated training platform, and a few assumptions make the problem 

easier to tackle compared to other high-performance ML pipeline design problems. First, the search space for core ML 

model hyperparameters can be restricted to a few key hyperparameters that affect training performance, the trained model's 

inference performance, or the time it takes to run a single prediction, but do not interact with other ML model 

hyperparameters and are not resource-usage optimizable. Core ML model hyperparameter examples include several 
layers, layer type, and layer width for neural networks, and the number of trees and leaf size for tree-based models. Second, 

we use the cloud's elastic and on-demand nature by provisioning accelerated computing in a high-throughput and bottom-

up manner to align with the pipeline business team members' tolerance for additional operational risk. Cloud costs are 

passed down to application owners, but hyperparameter optimization jobs are assumed to be run on behalf of all 

application owners and drive the overall value of the ML infrastructure. 

Several techniques are currently used to optimize ML pipelines by automating and/or simplifying design infrastructure 

decisions. Automated Deep Learning toolkits automate core ML model design decisions using user-provided compute 

resources. These pipelines are run by data scientists who consume the entire ML pipeline as a service offering that answers 

their ML-defining business question. The tools expose an API that takes training and validation sets along with the value 

of the ML-defining business question as input and runs a pipeline search back-end to generate a recommendation of a 

pipeline that produces the best results achieving the value of the ML-defining business question. The back-end outputs 

the suggested hyperparameters based on additional runs to find the best hyperparameters. 
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5. Fault-Tolerance in AI Infrastructure 

 

In both commercial and scientific settings, AI workloads are constantly exposed to transient hardware and software issues 

that occur across the stack. The space provides only limited guarantees regarding the correctness and reliability of AI jobs. 

Furthermore, since AI jobs take a long time to run, a minor error can affect the correctness of the result, as well as the 

resource investment. Therefore, it becomes the responsibility of the AI developers to ensure that the jobs recover from 
real-world issues, such as task or job failures across worker nodes, server-side caching, and network issues, and produce 

valid results. 

Recall that Cloud-Native Infrastructure must comply with low-level cross-layer failures, known as basis faults, that 

represent a separation between high-level fault models across the stack and their low-level representations. In this section, 

we first delve into the notion of fault tolerance in computing systems at large at both high and low levels. Then we discuss 

existing design patterns and systems for resilience in AI workloads. We conclude the section by highlighting major open 

questions related to fault tolerance and design patterns for real-world AI systems. We encourage AI developers to leverage 

these patterns from concurrent systems to ensure resilience in their jobs. 

To determine an answer to the high-level question of fault-tolerance, we must find predicates that approximate an answer 

to the basic low-level fault-tolerance question above. Fault tolerance is characterized by the properties and guarantees of 

a system's recovery control layer, but it is fundamentally a property of the jobs that run on that system. Therefore, 
answering the above question is a two-step process. First, for a given application, we customize the system's recovery 

control layer to provide our chosen predicates. Then we demonstrate that the job runs correctly even in cases of the 

predicates being violated. 

 

  
 

Equation 2 : Fault Tolerance Index (FTI): 

 

5.1. Understanding Fault-Tolerance 

Researchers and users have come to depend heavily on machine learning for making business-critical decisions. As a 

result, they have become less and less tolerant of outages. A single unavailable model might mean dissatisfaction or loss 

for hundreds or thousands of end users or customers. Considering the number of end users, plus the dollar amount of 

transactions affected per minute, some experts suggest that model downtime can result in losses more significant than 
outages of financial services. In addition, there are additional compliance requirements. The European Union’s Artificial 

Intelligence Act envisages liability both for low- and high-risk AI products. Contrary to some popular perception, having 

no compliance infrastructure in place will not diminish your maker status. If you design and build an AI tool, you are 

liable for its use. This new situation makes the need for built-in model resilience even greater. 

When discussing a fault-tolerant system, we must point out that it is not the same as a reliable system. The latter is defined 

as an application that, when running, works correctly all the time. This definition presumes that there is never a fault. In 

contrast, the former defines objectives for a system that can still be able to run, despite failures. In this definition, the main 

goal is to guarantee an ongoing process of service delivery, i.e., providing some specific service for a particular (possibly 

non-empty) set of users for the longest possible time. In fault-tolerant systems, there is an implicit agreement with users 

that, when problems are detected, services will tend to be resumed quickly through backup mechanisms or similar 

solutions. If requested services remain unavailable for a long time, clients may get upset. Altogether, since organizations 
can suffer losses if they take models offline repeatedly, they must carefully consider the trade-offs between making models 

less prone to faults and using them as they are. 

 

5.2. Design Patterns for Resilience 

A concept as popular as microservices, cloud-native application design patterns, such as service discovery, circuit breaker, 

or retry, have become an important notion for the reliability of production services. In the ML pipeline world, while there 

are early attempts at designing pipelines from a cloud-native design perspective, there is not an existing well-defined set 

of recommendations to achieve resilience. This section introduces fault-tolerance frameworks that have become well-

established design patterns in non-ML systems. The goal here is to provide insight into possible ways of increasing 

resilience for ML pipelines and creating compatibility with discussions for general distributed systems, increasing reuse 

of research and implementations from the broader distributed systems research community. We define three patterns, that 
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are at various levels of abstraction: design-for-failure, coordination management, and best-effort execution, that answer 

the question of what to do when a component of a distributed system fails. Discussing existing ML pipelines, and perhaps 

incorporating their design, or assuming a specific design, we address this question some more, by looking specifically at 

three categories of pipeline components: drivers, executors, and evaluators. The guiding principle of design-for-failure is 

that components in a distributed system cannot always be expected to be reliable; infrastructure fails, networks fail, and 

components run out of memory and crash. Therefore, the design of the system should reflect this, and have adequate 
support to handle these failures. A system built around design-for-failure should not only assume the possibility of failure, 

but it should do so actively. 

 

6. Compliance and Security Considerations 

 

The choice of cloud-native AI Infrastructure may be consequential for the compliance and security posture of the 

organization deploying it. When IaaS and PaaS services are chosen, the cloud provider is subject to some level of 

compliance verification, likely resulting in compliance attestation. Although this attestation will cover a large portion of 

the services offered within a cloud region, regulatory requirements that affect the whole technology stack, including AI 

technology, may not be covered in the attestation. It is then up to the customer organization to ensure that it is regulating 

compliance checks both upstream and downstream of the IaaS and PaaS cloud services. 
One recommendation that we make when deploying cloud-native AI Infrastructures, particularly PaaS services, is to be 

aware of service-region dependency when deploying multi-region architectures. Although architecture resilience dictates 

the deployment of business-critical systems in multiple geographic, tech, and cloud regions, regulatory requirements 

focused on data locality or specific assessment of cloud services may limit the deployment or availability of certain 

services in a specific region. 

To ensure business data security and prevent reputational and financial damage because of rising cybersecurity incidents 

in the domain of AI solutions, deploying cloud-native AI solutions must follow industry-recognized criteria. Business 

models built on AI solutions are often sensitive by nature as they fully expose their value chain to the consumers of their 

service. Therefore, industry-recognized security considerations applied to cloud-native AI Infrastructures should cover 

some of the most common ML-model-attack vectors. 

 

 
Fig 4 : Security in Cloud-Native Services 

 

6.1. Regulatory Requirements 

Regulatory compliance is an important aspect of machine learning models in a production environment. Machine learning 

models can be subject to various regulatory frameworks depending on their purpose, model design, output, and possible 

impact on different groups of people. Before moving into model design and specifications, we want to draw attention to 

three compliance regulations, namely the EU General Data Protection Regulation, the EU Digital Services Act, and 

Section 230.230.1 in the SEC rule. The SEC rule is the most important regulation for machine learning models presented 

in this chapter since it outlines certain operational requirements for broker-dealers in their use of quantitative trading 

models and developer models internally to structure investment transactions. 
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The SEC states that a broker-dealer that designs for in-house use or uses a quantitative model must, by rule, establish and 

implement written policies and procedures reasonably designed to ensure that the quantitative model is: used only for its 

intended purpose, validated before use, and revalidated periodically. In terms of financial compliance, the SEC has laid 

down specific requirements. We expect that further compliance regulations concerning AI systems will follow covering 

more domains over time. The EU GDPR has various requirements that arise from data-driven machine learning model 

development, being specialized on the datasets being used or the functioning of the model. If the model is making decisions 
on behalf of an organization, rather than as an aid, the EU DSA will further apply. Also, the EU DSA has specific 

requirements for these cases regarding topics like risk management, robustness, and data governance. The main model 

and system requirements will be covered in this chapter. 

 

6.2. Data Privacy and Security Best Practices 

Historically, the most common data privacy violations have originated from poor access management systems, lack of 

monitoring data access, sharing PHI over insecure channels, failure to use strong user authentication protocols, and lack 

of encryption. Fortunately, both cloud providers and organizations can take several common measures to mitigate the 

most significant data privacy risk. Specifically, all cloud services and on-premise environments used in the ML process 

should implement role-based access control systems that also support least privilege; multifactor authentication systems 

to increase the security of the user authentication process; encryption both at rest and in transit; data leak prevention tools 
to mitigate the risk of insiders unintentionally disclosing PHI; monitoring, logging, and alerting systems to detect 

inappropriate data access; key management systems that rotate keys regularly; and employee training about data privacy 

procedures and security technology used by the organization. 

Furthermore, the above four risk mitigation strategies might be insufficient for some organizations with more stringent 

data privacy requirements. For example, there is an initiative designed to help health organizations establish a higher 

threshold of confidence to support and evaluate their security solutions against stricter data privacy guidelines. In addition, 

some organizations, especially in the finance and healthcare sectors, might restrict the deployment of some of their 

sensitive ML platforms to on-premises solutions due to more stringent regulatory data encryption and access management 

controls. Organizations that wish to deploy ML tools for PHI data to the cloud are required to conduct a thorough risk 

assessment. All the involved regulatory agencies should be contacted to discuss and validate the plan of the organization 

to establish the appropriate threshold of risk versus return on investment in privacy technology. 

 

7. Framework for Designing Cloud-Native AI Infrastructure 

 

Machine Learning (ML) projects are known for their novel and complex requirements, leading practitioners to often 

reinvent the wheel from scratch. Central to the CI/CD revolution for traditional software are pipelines and tools that make 

it easy for engineers to select, deploy, and reuse high-quality software components. Such pipelines implement the software 

engineering principles of componentization, abstraction, and encapsulation that allow for agility and speed of change. In 

contrast to mature tools that are widely used for CI/CD of traditional software systems, support for CI/CD operations 

specific to ML pipelines is much less sophisticated and complex. 

To address this shortcoming, we designed a machine-learning infrastructure framework. Through a set of designs and key 

design choices, we enable the construction of ML pipelines that are performant, reusable, and composable, while 

leveraging the tools and services of technologies from the CI/CD revolution. Our framework helps implement ML 
pipelines executable and composable, integrating all the components from model development to deployment. Our 

reference architecture is cloud-native; that is, it relies on tools and methodologies that enable scalable, performant, and 

flexible applications when implemented in a public, private, or hybrid cloud. In this section, we describe the key design 

choices and reference architecture of our framework. Our CI/CD architecture has three key characteristics: It is cloud-

native and distributed at its core. With the level of abstraction provided by the cloud, the burden of ML pipeline 

infrastructure on model developers is minimized. Automated provisioning of these cloud services enables a rapid pace of 

experimentation. 

 

7.1. Architecture Overview 

Over the last few years, there have been significant advancements in all aspects of AI technology, including the 

development of foundation models, better model training algorithms, the availability of vast amounts of training data, and 

new software frameworks that improve developer productivity and application performance. Most recently, these 
advances in AI technology have been coupled with advances in ubiquitous cloud-enabled large-scale infrastructure 

capable of scaling to thousands of GPUs and TPUs. Even within a large enterprise, all of these different aspects of AI are 

still toddler stage. From a practical point of view, AI is not yet considered a serious anchoring application for web-scale 

cloud providers. As a software company, we would love for AI to become an anchoring application for the big cloud 

providers. That way, more technology, and more money would flow into the infrastructure-enabling space. However, we 

don't see that happening for several years. Building cloud-native AI infrastructure requires mastering all of the technology 
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stack between the original research to the cloud-native infrastructure layers where these research ideas are converted into 

deployable production solutions. Successful large companies are already providing cloud-based AI-enabling technology. 

In this chapter, we present a framework for designing cloud-enabled AI infrastructure by utilizing the principles of cloud-

native development and design. The framework can help architects at cloud providers define, scope, and prioritize their 

initial AI infrastructure capabilities as well as enable service providers. The framework is also useful for enabling 

developers and researchers to build more agile, flexible, and robust cloud-based AI solutions as well as enabling startup 
architects and software architects how to quickly build and release cloud-native AI applications. 

 

7.2. Key Components of the Framework 

The main components of the proposed framework for cloud-native AI infrastructure are resource controllers, cloud-

agnostic pipeline templates, infrastructure operations, cluster and device manager, and extensible API. Resource 

controllers are responsible for the high-level orchestration of resources required by ML subsystems to perform their 

primary functions including data storage, data IO, model training, model deployment, and model inference. Pipeline 

templates define a cloud-agnostic blueprint of the ML pipeline structured as a directed acyclic graph with edge attributes 

describing the ML data as well as the specifications and configuration of the tasks performed by the nodes in the graph. 

The pipeline execution engine instantiates concrete ML tasks using the information provided by the pipeline templates in 

their desired states and manages their life cycle for fault tolerance. Infrastructure operations enable users to change the 
infrastructure configuration for lifecycle events including stateless task relocation, periodic task restart, and sudden failure 

event handling. Cluster and device managers perform cluster and device orchestration at the lowest level based on a simple 

set of policies or periodic optimization algorithms. Extensible API allows for configuration and control of the ML pipeline 

at different levels of granularity from pipeline-specific parameters to infrastructure-level properties. 

Resource controllers provide users with an easy-to-use declarative programming model and high-level abstractions that 

enable them to quickly write ML pipelines without worrying about runtime details. It also takes care of instantiating 

concrete ML tasks using the information provided by the pipeline templates, putting them in desired states, and managing 

their life cycle for fault tolerance. This is especially useful for popular classes of ML applications that span across multiple 

types of tasks, and for which the requirements change frequently. ML systems that are structured according to our resource 

controllers can rely on our high-level service layer for rapidly implementing extensions and additions without adding to 

the infrastructure’s complexity and maintenance burden. 

 

8. Case Studies 

 

This section will provide readers with a compendium of AI applications, chosen from the plurality of fields in which they 

are being adopted at an industrial level. The aim is twofold: on the one hand, showing that the tools and patterns that we 

promote in the previous chapters may be used to satisfy the needs of highly diverse and demanding workloads; on the 

other hand, that such approaches can evolve and quickly adapt to the current innovation cycle of AI, which is mainly 

driven by the increasing availability of enormous foundation models. 

The applications we cover are: (i) Text Generation; (ii) Image Generation; (iii) Automated Drug Discovery; (iv) Medical 

Data Analysis; (v) Deepfakes and Advanced Synthetic Media; (vi) AI-Assisted Design and Creativity; and (vii) 

Algorithmic Autonomy and Decision Making. In each application, we describe the associated market and technologies, 

as well as the architectural challenges and the implemented cloud-native AI architectures. We hence depict the application 
areas as "cloud-native AI crossroads", demonstrating their importance with technical use cases from the industrial partners. 

Each architectural choice will be made clear through the description of how goals such as maintainability, reliability, and 

performance are dealt with: how the architectural restriction imposed by reliance on foundation models is taken into 

account; how the pipelines are automated and what technologies are used to automate them; how easy it is to add new 

pipelines to the industrial service; what Network Functions are meant to assure reliability and fast response time; how 

supervision of the flow is implemented and which tools are implemented to allow the human supervisor to act effectively; 

and how costs of retrieval, inference, and bandwidth are addressed. 

 

8.1. Industry Applications 

In recent years, we have seen success stories of diverse industries leveraging ML techniques to solve domain-specific 

problems. The financial sector has heavily relied on either supervised or unsupervised learning for many years for various 

prediction and classification tasks. They have used ML pipelines powered by traditional algorithms or deep neural 
networks to uncover fraud, gain customer insights, combat risk, automate the trading process, and create liquidity. Service 

providers within these industries work with diverse customer datasets to address similar if not the same problems. Data 

confidentiality is critical, yet they cannot build customer-specific pipelines at scale. This sets up a collaborative solution 

architecture where a set of high-performance ML pipelines need to be designed utilizing federated learning and transfer 

learning methods. These pipelines need to be capable of running on varying hardware environments so that they can be 
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submitted for training with minimal effort. Dataset and ML pipeline parameter monitoring will help to score the models 

periodically. 

The second vertical that has seen a surge in enterprise ML adoption is the technology sector. This sector has seen firms 

build their own in-house ML capabilities to help with all departments from DevOps, IT, and engineering all the way to 

sales, marketing, and support. They have also developed core products based on customer pain areas or market 

opportunities and whether that is providing time-based analytics, continuous model retraining, collaborative ML, user 
behavior prediction. 

 

8.2. Comparative Analysis of Approaches 

We apply our framework via two different security and availability products and services. The foundational technology 

for both approaches is an advanced engine that combines natural language understanding, knowledge representation, and 

automation for multi-domain AI operational workflow design and execution. The technology includes advanced 

technologies for first-pass document understanding and templating and can adapt domain-specific tags and categories that 

enrich the semantic structure through knowledge augmentation techniques. Many additional engine capabilities help 

inform and demonstrate other pipeline design decisions: we support multi-modal workflow steps that apply metadata 

templating to video and image assets, plus audio transcript templating for audio media. We offer data connectors to easily 

ingest almost any type of structured data and introduce automated fraud detections with outlier models around the media 
types, amplification metrics, plus third-party engagement properties. 

Both of our variants ingest sample document metadata and deployment variables and generate the rest of the pipeline steps 

by inferring from both the sample distribution properties plus the current capabilities of the models selected for each step. 

The comparison here is high-level: while security is often the lowest priority, availability monitoring must happen in near-

real-time around events such as news stories or product launches. This gives comparatively low execution and response 

times around demand pattern changes for the availability variant while providing greater resource quality plus cost 

management for the production stage of pipeline execution when compared to the detection operations of the security 

variant. How a number of these aspects concretely differ for these two approaches is summarized in the following table. 

 

 
Fig 5: AI Infrastructure Engineering 

 

9. Tools and Technologies 
 

This chapter gives an overview of available tools and technologies to enable cloud-native ML. These cloud infrastructure 

building blocks have been matured by many different teams over the last two decades. Almost all of the tools are either 

open-source or have community-supported versions available as derivatives. A thorough understanding of cloud 

technology can be invaluable in enabling data science teams at organizations to select the best-performing cloud-native 

technology stack, or customize and contribute to existing technology so that it meets the requirements of domain or 

vertical-specific needs. Throughout this chapter, we will discuss several of the technology components, and when 

appropriate, we will provide a few recommendations based on our experience. 

1. Cloud Platforms 

Public cloud service providers offer hosted infrastructures that are paid for on a subscription basis. They have several 

advantages over on-premises data centers: Ease of access and instant provisioning; Only pay for resources when needed; 
Outdated components can be easily replaced by newer versions with a click of a button, or staying behind the scenes and 

automatically updated; Scalable infrastructure can be created on-demand through automation; Resources can be shared 

by many teams, promoting collaboration; Advanced security practices are implemented and maintained by dedicated 

security teams. Availability of computing resources such as GPU and TPU hardware accelerators; and completeness of 

support for hardware and software needs of mission-critical workloads. 

The public cloud platforms have built entire ecosystems around their infrastructure products. Some of the core enabling 

technology components include container orchestration, data processing pipelines, ML pipelines, and ML model 
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deployment and monitoring of models in production. There have been several vertical-focused cloud platforms as well. 

These platforms may provide specialized cloud services that enhance existing services on traditional cloud platforms. Or, 

they build their entire infrastructure on top of open-source technology stacks and implement various optimizations on that 

technology along with managed services. Technologies for data storage, analytics, and feature storage are some examples 

of vertical-focused cloud platforms. 

 

9.1. Cloud Platforms 

Over the years, multiple cloud service providers have grown in scope and maturity. The most prominent of these include 

the top three: Amazon Web Services, Google Cloud Platform, and Microsoft’s Azure. Each of these vendors provides 

numerous services and products that follow the same general cloud service model and fulfill similar roles, including 

virtualized computing, networking, storage, and management services. The primary benefits of using cloud platforms for 

deploying AI infrastructure include ease of expanding or replicating work with additional compute cycles, increased fault 

tolerance provided by leveraging managed services within the cloud provider's offerings, and financial incentives available 

to users who run short, burstable jobs on flexible schedules. 

Today, the majority of organizations that use the cloud for AI development deploy their infrastructure on popular 

hyperscale cloud service providers. During modern data-centric AI development, special-purpose AI accelerators, 

typically with GPU and TPU chips, offered by these cloud providers, have mostly made deploying AI Infrastructure 
simpler. However, with the increased complexity of the high-performance, fault-tolerant AI pipelines, there is a growing 

need to share this infrastructure among many dev teams. Consequently, the use of flexible container-native AI stacks, 

either readily available in the public cloud or deployed privately by the relatively easier air gap pipeline builds, is becoming 

common. Cloud-native services shared and managed in a multi-tenant environment offer additional capabilities, such as 

monitoring and pre-processing pipelines that are available via integration with existing cloud data lakes. 

 

9.2. Machine Learning Frameworks 

Machine learning frameworks make it more convenient for ML engineers to develop production-ready ML pipelines. 

They usually implement custom data types and methods for transforming the data at scale; model training; prediction 

serving; and performance monitoring. Based on the automation level they offer, we can split available frameworks into 

three categories: low-level, high-level, and production-ready frameworks. Examples of low-level ML frameworks include 

various libraries. These frameworks expose a relatively simple interface for implementing ML computations and models. 
Usually, they provide modeling components that are easy to configure and extend. However, they do not offer built-in 

support for automatically managing model training at scale or deployment. Because of this, it is common for a production-

ready ML pipeline to use certain frameworks for model training, but not for prediction serving. 

Higher-level ML frameworks include various libraries. These frameworks are usually higher level than low-level 

frameworks and are designed specifically to make developing and validating ML models more efficient. Higher-level 

algorithms may be easier to fine-tune and usually, further reduce the number of lines of code needed to implement a 

model. For these reasons, models for some specific ML tasks are developed faster using these frameworks. However, in 

exchange for the higher level of convenience, they are less flexible and extensible, requiring implementations of less 

common algorithms to be more complicated. 

 

  
Equation 3: Compliance-Constrained Optimization (CCO): 

 

10. Conclusion 

 

In this work, we introduce a framework for designing cloud-native AI infrastructure to deliver high-performance, fault-

tolerant, and compliant machine learning pipelines as a set of loosely coupled heterogeneous services. We present the 

design constraints and implementation considerations associated with the development of each of the infrastructure 

services, as well as a reference implementation of the framework across a set of services. The framework design is a direct 

consequence of the interplay between the design constraints, as well as the needs for and challenges posed by enterprise 

ML systems. With the ubiquitous adoption of ML and AI technologies across the globe and the growing complexity of 

the model training and serving workflows, designing a cloud-native AI infrastructure is key to accelerating ML adoption 

within enterprises. We develop and open-source a platform to directly assess an enterprise's AI infrastructure design 

choices, including the ones composed of the Building Blocks communicated through the framework. 
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By implementing this platform and applying it to a customer use case, we showcase the flexibility, extensibility, and 

scalability of our framework, as well as the benefits that can be derived by adopting a layered, cloud-native architecture 

for the AI infrastructure components. We further communicate a set of lessons learned in building this platform, both from 

a technical and business perspective. To summarize, large design space and open challenges remain concerning 

autonomous, continuous design and mutation of AI infrastructure, and given the promise of generative-powered assistants 

within the AI domain, we believe that the focus for the future must not only be to understand the patterns associated with 
AI infrastructure design but also capitalize on them to increase developer velocity within this domain and further 

democratize AI within the enterprise. 

 

 
Fig 6 : engineering tools to build a cloud native IDP 

 

10.1. Final Thoughts and Future Directions 

Becoming cloud-native is no longer a choice for machine learning practitioners and organizations. It is a necessity because 

the cloud is the only environment that can support the scale of data and computing that is conducive to significant business 

growth and enables the implementation of compliance and reliability requirements. Cloud-native machine learning is not 

the same as machine learning in the cloud. Businesses need to adopt appropriate changes in their architectures and software 

infrastructure and the strategies they use to integrate machine learning into their business decision-making and practices 

to add value to their customers in a fault-tolerant and compliant manner. The cost and effort required to do this are 
significant and come from the high degree of complexity and newness associated with cloud-native design. This text 

provides the basis for this generation of cloud-native systems through the principles and design framework shared. 

These principles and design framework will continue to evolve as the world of cloud-fetch microservices and AI continues 

to consolidate the significant advances made on both sides. Shortly, we expect the cloud service providers to add new 

capabilities and build higher-level abstractions for machine learning that will continue enabling developers to easily create 

extensive offerings to help businesses collect data and build models that define and translate the business rules and the 

strategies that make the business unique and dynamic. In the far future, we hypothesize the emergence of AI natives who, 

much like web natives before them, are born into a world of complex AI-enabled systems and services. They expect that 

the digital world around them will learn their ever-changing needs and assist with the moment-to-moment decision-making 

required to provide them and their businesses with a life and existence that is seamless, enriching, and socially minded. 
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