eISSN: 2589-7799

2023 December; 6(10s)(2): 2299-2305

The Effect of Plyometric and Sprint Drills on Motor Coordination and Reaction Time in Competitive College Athletes

Sathish Bp1*, Dr. A. Kaleb Rajan2, Dr. N. Cinthia Jemima3

Abstract

This study examined the effects of structured plyometric and sprint training interventions on motor coordination and reaction time in competitive college athletes. A total of 84 Division II college athletes (42 males, 42 females) from track and field, basketball, and soccer programs were randomly assigned to three groups (n=28 per group): Group A received combined plyometric and sprint training, Group B performed plyometric training only, and Group C served as an active control group with standard conditioning. The 12-week intervention was implemented during the off-season training period, with sessions conducted three times weekly.

Pre- and post-intervention assessments measured motor coordination using the Körperkoordinationstest für Kinder (KTK) adapted for adults, simple and choice reaction times using computerized testing systems, and sport-specific agility through the Illinois Agility Test and T-test protocols. Results demonstrated that the combined plyometric and sprint training group (Group A) achieved the most significant improvements in all measured parameters. Motor coordination scores improved by 23.8%, simple reaction time decreased by 12.4%, choice reaction time reduced by 15.7%, and agility performance enhanced by 8.9%. The plyometric-only group showed moderate improvements, while the control group exhibited minimal changes.

These findings indicate that combined plyometric and sprint training represents an optimal training strategy for enhancing neuromuscular function and athletic performance in college athletes. The integration of both training modalities appears to create synergistic effects that exceed the benefits of either approach used independently.

Keywords: Plyometric Training, Sprint Training, Motor Coordination, Reaction Time, College Athletes, Neuromuscular Performance

Introduction

Athletic performance in competitive sports requires the complex integration of multiple physiological and neuromuscular systems working in precise coordination. Motor coordination and reaction time represent fundamental components of athletic success, influencing an athlete's ability to execute precise movements, respond rapidly to environmental stimuli, and maintain optimal performance under competitive pressures. In college-level competition, where the margin between success and failure is often measured in milliseconds or millimeters, enhancing these neuromuscular capabilities can provide crucial competitive advantages.

Motor coordination encompasses the ability to integrate sensory information with motor output to produce smooth, efficient, and purposeful movements. This complex process involves the central nervous system's capacity to coordinate multiple muscle groups, maintain balance and stability, and adapt movement patterns in response to changing environmental demands. In athletic contexts, superior motor coordination translates to improved technique execution, reduced energy expenditure, enhanced injury prevention, and greater consistency in performance outcomes.

Reaction time, defined as the interval between the presentation of a stimulus and the initiation of a voluntary response, represents another critical performance determinant in competitive athletics. Athletes must continuously process visual, auditory, and proprioceptive information while making rapid decisions and executing appropriate motor responses. The ability to minimize reaction time delays can determine success in situations such as responding to a starter's gun, reacting to an opponent's movement, or adjusting to unexpected game situations.

Plyometric training, characterized by rapid eccentric muscle contractions followed immediately by explosive concentric actions, has been extensively researched for its ability to enhance power output, jumping performance, and neuromuscular coordination. The stretch-shortening cycle mechanism underlying plyometric exercises stimulates both mechanical and neurological adaptations that contribute to improved athletic performance. From a neurological perspective, plyometric training enhances motor unit recruitment patterns, intermuscular coordination, and the efficiency of the stretch reflex, all of which may positively influence motor coordination and reaction time capabilities. Sprint training represents another evidence-based approach for developing neuromuscular function and athletic performance. The high-velocity, maximal-intensity nature of sprint exercises places significant demands on the

^{1*}Research Scholar

²Head of Physical Education Karunya Institute of Technology and Sciences

³Assistant Professor in English, Karunya Institute of Technology and Sciences

eISSN: 2589-7799

2023 December; 6(10s)(2): 2299-2305

neuromuscular system, requiring rapid force development, precise movement coordination, and efficient energy system utilization. Sprint training has been shown to improve reaction time, acceleration capacity, maximum velocity, and the ability to maintain speed under fatigue conditions.

While both plyometric and sprint training have demonstrated individual benefits for athletic performance, limited research has examined the combined effects of these training modalities on motor coordination and reaction time in college athletes. The potential for synergistic interactions between plyometric and sprint training methods warrants investigation, as the complementary physiological and neurological demands of these approaches may produce enhanced adaptations compared to either method used independently.

Current training practices in college athletics often incorporate both plyometric and sprint exercises within comprehensive conditioning programs. However, the optimal combination, sequencing, and periodization of these training elements remain unclear. Understanding the relative contributions and interactive effects of plyometric and sprint training on neuromuscular function could inform evidence-based training prescription and help coaches maximize the efficiency of limited training time.

This study aims to investigate the effects of combined plyometric and sprint training, plyometric training alone, and standard conditioning on motor coordination and reaction time in competitive college athletes. The research will provide valuable insights into the optimal training strategies for enhancing neuromuscular performance and athletic capabilities in this population. Additionally, the findings will contribute to the broader understanding of training adaptation mechanisms and inform best practices for college-level strength and conditioning programs.

Methodology Participants

The study recruited 84 competitive college athletes (42 males, 42 females) aged 18-22 years from Division II athletic programs including track and field (n=28), basketball (n=28), and soccer (n=28). All

participants were currently competing members of their respective teams with a minimum of two years of collegiate athletic experience. Exclusion criteria included current musculoskeletal injury limiting training participation, previous plyometric training experience exceeding 12 weeks within the past year, neurological conditions affecting motor function, and inability to commit to the full 12-week intervention period.

Participants were stratified by sport, gender, and baseline performance levels before random assignment to ensure balanced group composition. Written informed consent was obtained from all participants, and the study protocol received approval from the institutional review board. All testing and training procedures were conducted during the off-season period to minimize interference with competitive schedules and ensure consistent participation.

Research Design

A randomized controlled trial with a three-group design was implemented over a 12-week intervention period. The study followed a pre-test/post-test design with comprehensive baseline assessments conducted one week prior to intervention initiation and post-intervention testing completed within one week of program completion. All training sessions were supervised by certified strength and conditioning specialists to ensure proper technique execution and program adherence.

Intervention Groups

Group A (Combined Plyometric and Sprint Training): Participants performed integrated training sessions combining plyometric exercises and sprint drills three times weekly. Sessions included 15 minutes of dynamic warm-up, 25 minutes of combined plyometric and sprint activities, and 10 minutes of recovery and flexibility work.

Group B (Plyometric Training Only): This group participated exclusively in plyometric training sessions three times weekly, following the same session duration and structure as Group A but replacing sprint components with additional plyometric variations and recovery periods.

Group C (Active Control): The control group maintained standard conditioning activities typical of off- season training, including general cardiovascular exercise, basic strength training, and sport-specific skill work without structured plyometric or sprint interventions.

Training Protocols

Combined Plyometric and Sprint Program: Training sessions alternated between plyometric-emphasis and sprint-emphasis workouts within each week. Plyometric exercises progressed from low-intensity bilateral jumps to high-intensity unilateral and multidirectional movements. Sprint training included acceleration drills (10-30m), maximum velocity runs (40-60m), and change-of-direction sprints with full recovery between repetitions.

Plyometric-Only Program: Sessions focused exclusively on jumping and bounding exercises with systematic progression in intensity, complexity, and volume. The program included squat jumps, counter- movement jumps, depth jumps, lateral bounds, single-leg hops, and sport-specific plyometric patterns. Training volume increased from 80 total

eISSN: 2589-7799

2023 December; 6(10s)(2): 2299-2305

contacts per session in week 1 to 140 contacts by week 12.

Assessment Procedures

Motor Coordination Assessment: Motor coordination was evaluated using an adapted version of the Körperkoordinationstest für Kinder (KTK) modified for adult athletes. The test battery included four stations: balance beam walking, hopping on one foot over obstacles, lateral jumping, and moving sideways on platforms. Each test was scored according to standardized protocols with composite scores representing overall coordination ability.

Reaction Time Testing: Both simple and choice reaction times were measured using a computerized reaction time system (Lafayette Instrument Model 63017). Simple reaction time involved responding to a single visual stimulus, while choice reaction time required discriminating between different colored stimuli and executing appropriate responses. Each test included 20 trials with the fastest and slowest times excluded from analysis.

Agility and Speed Assessment: Athletic performance was evaluated using the Illinois Agility Test and T- test protocols to assess multidirectional movement capability. Additionally, 20-meter sprint times were recorded using electronic timing gates to measure acceleration and maximum velocity components.

Anthropometric and Baseline Measures: Height, weight, body composition (via DEXA scan), and training history were recorded for all participants. Baseline fitness assessments included vertical jump height, standing broad jump distance, and estimated VO₂max from a graded exercise test.

Statistical Analysis

Data analysis was performed using SPSS statistical software with significance level set at p < 0.05. Descriptive statistics were calculated for all variables with normal distribution confirmed through Shapiro- Wilk tests. Mixed-design ANOVA was employed to examine between-group and within-group changes over time, with post-hoc Tukey tests for pairwise comparisons when significant main effects were detected. Effect sizes were calculated using Cohen's d to determine practical significance of observed changes. Separate analyses were conducted for male and female participants to identify potential gender-related training responses.

Results

All 84 participants completed the 12-week intervention with excellent adherence rates exceeding 95% across all groups. No training-related injuries were reported during the study period. Baseline characteristics were similar across groups for all measured variables, confirming successful randomization procedures.

Motor Coordination Outcomes

The combined plyometric and sprint training group (Group A) demonstrated the most substantial improvements in motor coordination performance. Composite KTK scores increased from 142.6 ± 18.3 to

 1765 ± 21.7 points, representing a 23.8% improvement that was significantly greater than both other groups. The plyometric-only group (Group B) showed moderate improvements of 16.2%, while the control group exhibited no meaningful changes (0.2% increase).

Individual test components revealed that Group A achieved significant improvements across all four coordination tasks, with the greatest enhancements observed in lateral jumping (28.4% improvement) and moving sideways (25.7% improvement). These findings suggest that the combined training approach effectively enhanced both bilateral and unilateral coordination patterns.

Reaction Time Results

Simple reaction time performance improved significantly in Group A, decreasing from 187.3 ± 23.4 milliseconds to 164.1 ± 19.8 milliseconds (12.4% improvement). Group B demonstrated moderate improvements of 8.7%, while the control group showed no significant changes. The magnitude of improvement in Group A was significantly greater than both comparison groups.

Choice reaction time results followed a similar pattern, with Group A achieving a 15.7% reduction from 312.8 ± 41.2 to 263.7 ± 36.9 milliseconds. Group B improved by 10.3%, while the control group remained essentially unchanged. The superior improvements in Group A suggest that combined training may enhance both simple and complex decision-making processes.

Agility and Athletic Performance

Illinois Agility Test performance showed significant improvements in Group A (8.9% faster completion time) compared to Group B (5.2% improvement) and the control group (0.06% change, essentially no improvement). T-test results

eISSN: 2589-7799

2023 December; 6(10s)(2): 2299-2305

demonstrated similar trends with Group A achieving 7.6% improvement versus 4.1% for Group B and 0.09% for controls.

Twenty-meter sprint performance improvements were most pronounced in Group A (6.7% faster times) compared to Group B (3.8% improvement) and controls (0.9% improvement). These results indicate that combined training enhanced both acceleration and multidirectional movement capabilities.

Training Response Comparisons

Statistical analysis revealed significant group \times time interactions for all primary outcome measures, indicating differential training responses between interventions. Effect size calculations showed large effects (d > 0.8) for Group A across all measures, moderate effects (d = 0.5-0.8) for Group B, and small effects (d < 0.5) for the control group. Gender analysis revealed that male and female athletes responded similarly to training interventions, with no significant gender \times group \times time interactions detected. This finding suggests that the training protocols are equally effective for both male and female college athletes.

Table 1: Pre- and Post-Intervention Motor Coordination and Reaction Time Measures (Mean ± SD)

Group	KTK Composite Score	KTK Composite Score				Choice RT (ms)
	Pre	Post	Pre	Post	Pre	Post
Group A (Combined)	142.6 ± 18.3	176.5 ± 21.7*	187.3 ± 23.4	164.1 ± 19.8*	312.8 ± 41.2	263.7 ± 36.9*
Group B (Plyometric)	141.8 ± 19.1	164.8 ± 22.4*	185.9 ± 24.1	169.7 ± 21.3*	309.4 ± 39.8	277.6 ± 38.2*

T T		KTK Composite Score				Choice RT (ms)
Group C (Control)	143.2 ± 17.9	143.5 ± 18.1	186.7 ± 22.8	186.3 ± 22.9	314.2 ± 42.1	313.8 ± 41.8

^{*}Significant difference from baseline (p < 0.05)

Table 1 demonstrates that both training interventions produced significant improvements in motor coordination and reaction time measures, with the combined plyometric and sprint training approach achieving the greatest enhancements across all parameters. The control group showed virtually no change, confirming the necessity of structured training interventions.

Table 2: Agility and Sprint Performance Outcomes (Mean ± SD)

Group	Illinois Test (sec)	Illinois Test (sec)	T-Test (sec)	T-Test (sec)	20m Sprint (sec)	20m Sprint (sec)
	Pre	Post	Pre	Post	Pre	Post
Group A (Combined)	16.84 ± 1.23	15.34 ± 1.07*	10.67 ± 0.89	9.86 ± 0.74*	3.21 ± 0.19	2.99 ± 0.16*
Group B (Plyometric)	16.91 ± 1.19	16.03 ± 1.14*	10.72 ± 0.92	10.28 ± 0.85*	3.23 ± 0.18	$3.11 \pm 0.17*$
Group C (Control)	16.88 ± 1.21	16.87 ± 1.22	10.69 ± 0.87	10.68 ± 0.88	3.22 ± 0.20	3.22 ± 0.20

^{*}Significant difference from baseline (p < 0.05)

Table 2 reveals that both training groups improved agility and sprint performance, with the combined training approach producing superior results compared to plyometric training alone. The control group demonstrated no meaningful changes across all performance measures, highlighting the effectiveness of the training interventions.

eISSN: 2589-7799

2023 December; 6(10s)(2): 2299-2305

Discussion

The findings of this study provide compelling evidence that combined plyometric and sprint training represents a superior approach for enhancing motor coordination and reaction time in competitive college athletes compared to either plyometric training alone or standard conditioning practices. The synergistic effects observed when combining these training modalities suggest that the integration of different neuromuscular stimuli produces adaptations that exceed the sum of individual training components.

Mechanisms of Enhanced Motor Coordination

The 23.8% improvement in motor coordination observed in the combined training group likely reflects multiple neurological and biomechanical adaptations. Plyometric exercises enhance intermuscular coordination by requiring precise timing and sequencing of muscle activation patterns across multiple joints and planes of movement. The rapid stretch-shortening cycles characteristic of plyometric training stimulate proprioceptive feedback systems and improve the efficiency of reflexive stabilization responses.

Sprint training contributes additional coordination benefits through its demands for high-frequency muscle contractions, reciprocal inhibition patterns, and maintenance of optimal body alignment at maximal velocities. The combination of these training stimuli appears to create a more comprehensive challenge to the motor control system, resulting in superior coordination adaptations compared to either approach used independently.

Reaction Time Enhancement Mechanisms

The significant improvements in both simple and choice reaction times following combined training suggest enhanced function at multiple levels of the neuromuscular system. Simple reaction time improvements (12.4%) indicate enhanced efficiency in basic stimulus-response pathways, potentially reflecting improved neural conduction velocity, motor unit recruitment patterns, and neuromuscular coordination.

The even greater improvements in choice reaction time (15.7%) suggest enhanced cognitive processing capabilities, including improved attention, decision-making speed, and motor program selection. The complex, variable nature of combined plyometric and sprint training may stimulate adaptations in higher-order cognitive functions that contribute to faster and more accurate responses to complex stimuli.

Training Specificity and Transfer Effects

The superior performance improvements observed in sport-specific agility tests demonstrate effective transfer of training adaptations to athletic performance contexts. The 8.9% improvement in Illinois Agility Test performance and 7.6% enhancement in T-test scores indicate that the neuromuscular adaptations achieved through combined training translate effectively to multidirectional movement tasks common in competitive sports.

The significant improvements in 20-meter sprint performance (6.7%) further validate the training approach, as linear speed represents a fundamental component of athletic success across multiple sports.

The ability of the combined training program to enhance both linear and multidirectional movement capabilities suggests broad-spectrum neuromuscular adaptations that benefit diverse athletic requirements. **Practical Applications** for College Athletes

These findings have important implications for strength and conditioning practices in college athletics. The demonstrated superiority of combined plyometric and sprint training suggests that coaches should integrate both training modalities rather than focusing exclusively on single approaches. The efficient use of training time achieved through combined programming is particularly relevant in college settings where academic demands limit available training hours.

The lack of gender differences in training responses indicates that the combined approach is equally effective for male and female college athletes, supporting its broad application across diverse athletic populations. This finding is particularly valuable for coaches working with mixed-gender training groups or multiple sports programs.

Periodization and Program Design Considerations

The successful implementation of combined training over a 12-week period demonstrates the feasibility of integrating plyometric and sprint exercises within existing conditioning programs. The progressive increase in training intensity and complexity throughout the intervention period reflects sound periodization principles that allow for systematic adaptation while minimizing injury risk.

Future program design should consider the optimal sequencing of plyometric and sprint exercises within individual training sessions, as well as the appropriate distribution of training emphases across weekly and monthly cycles. The current study's alternating approach between plyometric-emphasis and sprint-emphasis sessions appears effective, but additional research examining different integration strategies would further refine programming recommendations.

eISSN: 2589-7799

2023 December; 6(10s)(2): 2299-2305

Limitations and Future Research Directions

While these results are encouraging, several limitations should be acknowledged. The 12-week intervention period, though substantial for off-season training, represents a relatively short timeframe for assessing long-term adaptations and retention of training benefits. Future research should examine the sustainability of improvements and optimal maintenance strategies during competitive seasons.

The study population was limited to Division II college athletes, and results may not generalize to other competitive levels or recreational populations. Additionally, the research was conducted during the off-season when athletes had adequate recovery capacity and minimal competing training demands. Investigation of combined training effects during competitive seasons would provide valuable practical insights.

Conclusion

This study demonstrates that combined plyometric and sprint training represents an optimal strategy for enhancing motor coordination and reaction time in competitive college athletes. The integrated training approach achieved superior improvements compared to plyometric training alone or standard conditioning practices, with gains of 23.8% in motor coordination, 12.4% in simple reaction time, and 15.7% in choice reaction time. These neuromuscular enhancements translated effectively to improved athletic performance as evidenced by significant improvements in agility and sprint testing.

The synergistic effects observed when combining plyometric and sprint training modalities suggest that the integration of complementary neuromuscular stimuli produces adaptations that exceed those achieved through single-approach training. This finding has important implications for strength and conditioning practices in college athletics, supporting the implementation of combined training programs that efficiently utilize limited training time while maximizing performance outcomes.

The practical significance of these findings extends beyond immediate performance improvements to include potential benefits for injury prevention, movement quality, and long-term athletic development. The enhanced motor coordination and reaction time capabilities developed through combined training may contribute to more efficient movement patterns, reduced injury risk, and improved consistency in competitive performance.

College strength and conditioning professionals are encouraged to implement combined plyometric and sprint training programs during off-season periods, with careful attention to progressive program design, adequate recovery protocols, and individual athlete needs. The demonstrated effectiveness of this approach across both male and female athletes supports its broad application in diverse college athletic settings.

Future research should focus on optimizing the integration of plyometric and sprint training components, investigating long-term adaptation patterns, and examining the effectiveness of combined training during competitive seasons. Additionally, exploration of sport-specific program modifications and individual response variability would further enhance the practical application of these findings in college athletic contexts.

References

- 1. Ramírez-Campillo, R., Álvarez, C., García-Hermoso, A., Ramírez-Vélez, R., Gentil, P., Asadi, A.,... & Izquierdo, M. (2018). Methodological characteristics and future directions for plyometric jump training research: A scoping review. Sports Medicine, 48(5), 1059-1081.
- 2. Stojanović, E., Ristić, V., McMaster, D. T., & Milanović, Z. (2017). Effect of plyometric training on vertical jump performance in female athletes: A systematic review and meta-analysis. Sports Medicine, 47(5), 975-986.
- 3. Haugen, T., & Buchheit, M. (2016). Sprint running performance monitoring: Methodological and practical considerations. Sports Medicine, 46(5), 641-656.
- 4. Sheppard, J. M., & Young, W. B. (2006). Agility literature review: Classifications, training and testing. Journal of Sports Sciences, 24(9), 919-932.
- 5. Zemková, E., & Hamar, D. (2014). Agility performance in athletes of different sport specializations. Acta Gymnica, 44(3), 133-140.
- 6. Meylan, C., & Malatesta, D. (2009). Effects of in-season plyometric training within soccer practice on explosive actions of young players. Journal of Strength and Conditioning Research, 23(9), 2605-2613.
- 7. Cronin, J. B., & Hansen, K. T. (2005). Strength and power predictors of sports speed. Journal of Strength and Conditioning Research, 19(2), 349-357.
- 8. Young, W. B., James, R., & Montgomery, I. (2002). Is muscle power related to running speed with changes of direction? Journal of Sports Medicine and Physical Fitness, 42(3), 282-288.
- 9. Markovic, G., & Mikulic, P. (2010). Neuro-musculoskeletal and performance adaptations to lower-extremity plyometric training. Sports Medicine, 40(10), 859-895.

eISSN: 2589-7799

2023 December; 6(10s)(2): 2299-2305

10. Chaouachi, A., Hammami, R., Kaabi, S., Chamari, K., Drinkwater, E. J., & Behm, D. G. (2014).

11. Olympic weightlifting and plyometric training with children provides similar or greater performance improvements than traditional resistance training. Journal of Strength and Conditioning Research, 28(6), 1483-1496.