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Abstract

Chikungunya virus (CHIKV) is a rapidly spreading vector-borne disease that poses significant global health risks due
to its recurrent outbreaks, long-lasting arthralgia, and diagnostic overlap with other arboviruses such as dengue and
Zika. Effective monitoring and decision-making systems are crucial to improve outbreak prediction, optimize
resource allocation, and enhance public health responses. This study explores a wide range of decision-making
techniques and time-series models, mechanistic and Bayesian frameworks, machine learning (ML), deep learning
(DL), multi-criteria decision-making (MCDM), geospatial and spatiotemporal models, and loT/edge-enabled
decision support. We compare their interpretability, data requirements, real-time suitability, and adaptability to low-
resource settings. In addition, we emphasize challenges such as data scarcity, non-stationary dynamics due to climate
variability, and the need for explainable and equitable Al-driven systems. By synthesizing state-of-the-art methods
and emerging digital health technologies, this paper provides actionable insights for researchers, healthcare
practitioners, and policymakers in building robust, scalable, and context-aware monitoring frameworks for
Chikungunya disease.

Introduction

Chikungunya virus (CHIKV) is a re-emerging mosquito-borne alphavirus transmitted primarily by Aedes aegypti and
Aedes albopictus, which also serve as vectors for dengue and Zika. Since its discovery in Tanzania in 1952, CHIKV
has caused recurrent outbreaks across Africa, Asia, and the Americas, affecting millions of people worldwide.
Although the infection is rarely fatal, it manifests with high fever, rash, and severe joint pain that can persist for
months or even years, causing long-term disability and economic losses [1]. The chronic arthralgia associated with
chikungunya has been shown to reduce quality of life, leading to absenteeism and productivity decline, making it a
pressing public health concern. The global expansion of chikungunya has been facilitated by increased international
travel, urbanization, and climatic changes that favor mosquito breeding. The World Health Organization (WHO)
reported ongoing outbreaks in Asia and Africa in 2022, with imported cases spreading to non-endemic regions
including Europe [2], [3]. Similarly, the European Centre for Disease Prevention and Control (ECDC) tracks
frequent case importation into European countries. This demonstrates that chikungunya is no longer a localized
disease but a global health threat requiring transnational surveillance and coordinated control strategies. Figure 1
shows cycle of chikungunya mosquito spread.
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Figure 1. Chikungunya mosquito spread cycle
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One of the critical challenges in managing chikungunya is its clinical overlap with other arboviruses such as dengue
and Zika. Since these infections share symptoms like fever, rash, and joint pain, misdiagnosis is common,
particularly in co-circulation periods [11]. The researchers have employed statistical and mechanistic models to
capture the dynamics of chikungunya spread. Statistical methods such as SARIMA have been applied to case data in
Brazil, producing reliable forecasts of seasonal incidence trends [8]. Mechanistic compartmental models, such as
SEIR variants, have been used to understand transmission dynamics, estimate epidemiological parameters, and
evaluate intervention strategies under uncertainty [6]. Bayesian inference further strengthens these models by
quantifying uncertainty, allowing policymakers to make evidence-based decisions with explicit confidence bounds.
The rise of machine learning (ML) and deep learning (DL) has transformed outbreak forecasting and clinical
decision support. Studies have shown that ML classifiers can distinguish between chikungunya, dengue, and Zika
with high accuracy when trained on clinical and laboratory features. DL architectures such as LSTMs and CNNs
have been applied to arboviral time series, capturing nonlinear dependencies and enabling multi-modal integration
with mobility and climate data [12]. These Al-driven approaches provide powerful prediction capabilities but raise
concerns regarding interpretability, fairness, and generalizability in low-resource settings.

Parallel advances in geospatial and remote sensing technologies have enabled more precise monitoring of
environmental determinants of chikungunya. Satellite-derived indices of temperature, rainfall, vegetation, and
urbanization have been used to model mosquito habitat suitability. Bayesian hierarchical spatial models further
enhance prediction by accounting for spatial dependence and interaction effects, improving hotspot detection
accuracy [4], [S]. These methods highlight the importance of incorporating ecological and environmental signals into
outbreak monitoring pipelines. The integration of digital health and IoT-enabled systems marks a new frontier in
chikungunya surveillance. Wearable sensors and smart devices have been deployed to continuously monitor
symptoms and environmental exposures [14]. [oT architectures allow real-time data collection, edge processing, and
cloud-based analytics for outbreak alerts. Moreover, explainable Al ensembles are being designed to ensure
transparency and user trust in decision-support systems [19]. These innovations are particularly promising in
resource-limited settings, where conventional surveillance infrastructure is weak. Despite this there is an urgent need
to systematically study and analyze decision-making techniques for chikungunya monitoring. No single approach is
sufficient in statistical models provide baseline interpretability, mechanistic models capture causal structure, ML/DL
methods enhance predictive power, and loT/edge systems ensure real-time adaptability. A layered, hybrid framework
that leverages complementary strengths while addressing challenges of data quality, fairness, and explainability will
be critical to advancing chikungunya surveillance.

Literature Review

Several studies have explored computational and decision-making techniques for the monitoring and prediction of
chikungunya outbreaks. Freitas et al. [4] conducted one of the earliest detailed spatio-temporal analyses during the
2016 outbreak in Rio de Janeiro, applying Bayesian models to identify how socioeconomic and environmental
conditions influenced disease spread. Similarly, Santos et al. [5] examined the spatial and temporal dynamics of
chikungunya in Brazil between 2017 and 2023, demonstrating that climatic variability and social vulnerability
significantly contributed to epidemic intensity.

Mechanistic approaches have also been investigated to capture biological realism in transmission dynamics. Meyer et
al. [6] employed a Bayesian SEIR framework to estimate epidemiological parameters while explicitly quantifying
uncertainty, offering policymakers more robust decision support. Expanding on this, Vazquez-Pefia et al. [7]
introduced a relapse-based chikungunya model with Bayesian estimation, highlighting the potential role of
reinfection in shaping long-term epidemic trajectories. Complementing these approaches, Yakob et al. [§&]
demonstrated that SARIMA models could reliably forecast chikungunya incidence in Brazil, showcasing the utility
of time-series techniques as baseline forecasting tools. With the rise of digital epidemiology, studies have begun
leveraging internet-based data streams for early outbreak detection. Verma et al. [9] showed that Google Trends
could predict acute febrile illness signals, including chikungunya, with week-level lead times compared to traditional
surveillance. Similarly, Miller et al. [10] validated the use of Google search data as faster outbreak indicators,
emphasizing the value of online behavior in enhancing real-time surveillance.

Machine learning (ML) and deep learning (DL) have been increasingly applied for chikungunya detection and
diagnosis. Arrubla-Hoyos et al. [11] developed ML classifiers capable of distinguishing chikungunya from dengue
and Zika with high accuracy, thus addressing challenges of clinical misdiagnosis. Da Silva Neto et al. [12] conducted
a systematic review of ML/DL methods, highlighting their promise in arboviral diagnosis while noting the
challenges of data scarcity and model generalization. Abdallah et al. [13] advanced this area by integrating multi-
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criteria decision-making (AHP) with transfer learning, resulting in a hybrid system for forecasting multiple
arboviruses with improved accuracy and interpretability. Beyond predictive modeling, IoT-based systems have
emerged as practical tools for real-time health monitoring. Sood and Mahajan [14] proposed a wearable IoT-enabled
healthcare system for detecting and monitoring chikungunya symptoms, demonstrating the feasibility of integrating
cyber-physical systems in outbreak response. Pley et al. [15] provided a broader perspective, reviewing digital
innovations in vector-borne disease management and emphasizing the importance of integrating big data, IoT, and
decision-support technologies.

Geospatial and remote sensing approaches further enrich chikungunya surveillance. Palo et al. [17] employed GIS
and satellite-derived data to map mosquito risk zones, offering a cost-effective method for large-scale monitoring.
Similarly, Nuthammachot et al. [18] integrated MCDM with GIS to generate transparent risk maps, thereby
supporting policymakers in targeting high-risk areas. Finally, Cheah et al. [19] emphasized the importance of
explainable Al ensembles in infectious disease decision support, ensuring that advanced ML systems remain
interpretable and trustworthy for public health applications. Studies demonstrate the diversity of decision-making
approaches for chikungunya monitoring. While statistical models such as SARIMA provide robust baselines,
mechanistic and Bayesian approaches offer biologically grounded insights. Meanwhile, ML/DL methods deliver high
predictive accuracy, MCDM ensures transparency, and [oT/GIS systems extend monitoring into real-time and
spatially explicit domains. Table 1 represents a finding of existing approaches.

Table 1. Findings of existing approaches
Method/Model Key Findings

Bayesian Spatio-temporal Models

Author(s)

Freitas et al. [4] showed environmental and socioeconomic drivers

Santos et al. [5]
Meyer et al. [6]

Vazquez-Pena, et al. [7]
Yakob et al. [8]
Verma et al. [9]

Miller et al. [10]
Arrubla-Hoyos et al. [11]
da Silva Neto et al. [12]
Abdallah et al. [13]

Sood & Mahajan [14]
Pley et al. [15]

Palo et al. [17]
Nuthammachot et al. [18]

Cheah et al. [19]

Spatio-temporal Analysis
Bayesian SEIR Models

Bayesian relapse model
SARIMA Models
Google Trends Analysis

Google Search Data
Machine Learning Classifiers
ML/DL Systematic Review
MCDM + Transfer Learning
IoT Wearable System

Digital Innovation Review
GIS + Remote Sensing

GIS + MCDM

Explainable Al Ensembles

Decision Making Techniques

identified climate and vulnerability factors

Estimated epidemiological parameters with
uncertainty awareness
Extended SEIR with relapse cases

Predicted chikungunya incidence reliably in Brazil

Forecasted acute febrile illness using online search
data

Showed faster chikungunya indicators than
traditional surveillance

Differentiated chikungunya, dengue, Zika with
high accuracy

Highlighted performance of Al in arbovirus
diagnosis

Combined AHP and ML for multi-disease outbreak
forecasting

Demonstrated IoT-based healthcare monitoring for
chikungunya

Reviewed technological innovations for vector-
borne disease control

Predicted mosquito risk zones using GIS-based
models

Applied multi-criteria GIS methods for risk
assessment

Discussed role of AI ensembles for infectious
disease decision support

Decision-making techniques for chikungunya monitoring encompass a wide range of computational, analytical, and
digital approaches aimed at forecasting outbreaks, guiding interventions, and supporting clinical and public health
decisions. Traditional statistical and time-series models such as ARIMA and SARIMA provide baseline forecasts by
capturing seasonal incidence trends, while mechanistic and Bayesian models (e.g., SEIR frameworks) integrate
biological transmission dynamics with uncertainty quantification to support epidemiological planning. More
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recently, machine learning (ML) and deep learning (DL) methods have enabled powerful predictive modeling and
differential diagnosis using multimodal data sources, though these approaches often face challenges of
interpretability and data scarcity. Figure 2, defines the Layered Framework of Decision-Making Techniques

Baseline Layer
SARIMA, GIS-MCDM
Routine surveillance & risk mapping

"]

Planning Layer
Bayesian/SEIR Models
Scenario testing & uncertainty estimation

¥

Predictive Layer
ML/DL Models
Outbreak prediction & differential diagnosis

Real-Time Layer
loT/Edge Systems
Symptom monitoring & instant alerts

Figure 2. Layered Framework of Decision-Making Techniques

In parallel, multi-criteria decision-making (MCDM) frameworks combined with GIS-based risk mapping offer
transparent and stakeholder-oriented tools for hotspot identification and resource prioritization. Furthermore, IoT and
edge-enabled systems have introduced real-time surveillance capabilities, integrating wearable sensors and
participatory data into outbreak monitoring pipelines.

3.1 Statistical and Time-Series Models (ARIMA/SARIMA): These models use historical case data to forecast future
incidence trends. SARIMA, for example, captures both seasonality and temporal autocorrelation, making it useful for
arboviruses with seasonal outbreaks. They are simple, interpretable, and effective in low-resource settings but are
limited in handling nonlinear dynamics and external covariates [8].

3.2 Mechanistic & Bayesian Models: Mechanistic models (e.g., SEIR) explicitly incorporate biological processes
such as infection, recovery, and mosquito transmission. Bayesian inference enhances these models by quantifying
uncertainty and integrating heterogeneous data sources. Such models are powerful for understanding disease
dynamics and testing intervention scenarios but require large datasets and accurate parameterization [6], [7]. Table 2,
shows chikungunya decision-making studies are evaluated, and shows that no single decision-making technique is
sufficient on its own.

Table 2. Comparison of Technique for Chikungunya Monitoring

Technique Strengths Limitations

Statistical / Time-Series (ARIMA, @ Simple, interpretable, requires fewer = Limited to linear patterns, weak in
SARIMA data, effective for seasonal trends handling exogenous variables
Mechanistic & Bayesian (SEIR, @ Captures biological realism, allows High data requirements, parameter
Bayesian inference) counterfactuals, quantifies uncertainty identifiability issues

Machine Learning (RF, SVM,  Handles multimodal data, strong Risk of overfitting, limited
Gradient Boosting) predictive accuracy interpretability

Deep Learning (CNN, LSTM, @ Learns nonlinear patterns, integrates —Data-hungry, computationally
Hybrid) temporal and spatial data intensive, black-box nature
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Multi-Criteria Decision-Making = Transparent, stakeholder-friendly, = Subjective weighting, static unless

(AHP, TOPSIS, CRITIC) integrates multiple indicators updated

Geospatial / Spatiotemporal Models = Explicitly models space-time dynamics, = Requires high-quality geospatial

(Bayesian Hierarchical, GIS) integrates satellite/environmental data inputs, complex calibration

IoT/Edge-Based Decision Support Real-time monitoring, supports smart Data privacy, cost, interoperability
healthcare, scalable challenges

3.3 Machine Learning: ML methods such as Random Forests, Support Vector Machines, and Gradient Boosting can
classify chikungunya cases and predict outbreaks using multimodal data—clinical, environmental, and
socioeconomic. They provide flexibility and strong predictive performance but risk overfitting when data is limited.
Moreover, lack of transparency may hinder adoption in clinical settings [11].

3.4 Deep Learning: DL architectures (e.g., CNNs, LSTMs) can capture complex nonlinear patterns and temporal
dependencies. They are effective in integrating large-scale data such as weather, mobility, and mosquito indices. DL
has shown promise in arboviral forecasting and differential diagnosis, but its major drawbacks include high data
requirements and low interpretability, which limit its direct application in public health decision-making [12].

3.5 Multi-Criteria Decision-Making: MCDM frameworks such as AHP (Analytic Hierarchy Process), TOPSIS, and
CRITIC combine multiple indicators—vector density, climate anomalies, population density, sanitation, and
healthcare accessibility—into a composite risk score. These methods are transparent and stakeholder-friendly,
making them suitable for health authorities. However, they rely heavily on subjective criteria weighting and may
need frequent recalibration [13], [18].

3.6 Geospatial & Spatiotemporal Models: Geospatial modelling integrates satellite data, remote sensing, and GIS to
produce risk maps and hotspot predictions. Bayesian hierarchical spatiotemporal models account for spatial
dependence and improve local intervention planning. These models are valuable for guiding targeted mosquito
control but often depend on access to high-quality geospatial datasets [4], [5], [17].

3.7 IoT/Edge-Based Decision Support Systems: [oT-enabled wearables and smart sensors allow real-time symptom
monitoring and environmental surveillance. Edge computing reduces latency by processing data locally, enabling
immediate outbreak alerts or triage decisions. These systems enhance scalability and personalization but face
challenges in data privacy, interoperability, and cost of deployment in low-resource settings [14], [19]. Figure 3,
represents the radar chart comparison of various decision-making techniques.
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Figure 3. Comparison of Decision-Making Techniques
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Evaluation Metrics and Decision Thresholds

Evaluating decision-making techniques for chikungunya monitoring requires a careful balance between accuracy,
interpretability, and timeliness. Statistical forecasting models such as ARIMA and SARIMA typically rely on error-
based metrics including Mean Absolute Error (MAE) and Root Mean Squared Error (RMSE) to quantify predictive
accuracy, while outbreak detection is triggered when incidence rates exceed epidemiological thresholds, often
defined as the baseline mean plus two standard deviations [8], [9]. Mechanistic and Bayesian approaches, including
SEIR and SIR models with Markov Chain Monte Carlo (MCMC) estimation, employ R? values, log-likelihood
scores, and Brier scores to measure model fit and probabilistic forecasting quality. In these cases, decision thresholds
are set on epidemiological parameters such as the basic reproduction number (Ro); for instance, interventions are
initiated if the probability of Ro > 1 exceeds a 95% confidence interval [6], [7].

Machine learning (ML) and deep learning (DL) models, widely applied for chikungunya differential diagnosis and
outbreak forecasting, employ classification-oriented metrics such as Accuracy, Precision, Recall, F1-score, and Area
Under the ROC Curve (AUC-ROC) [11], [12]. Thresholds for classification are often set at a default cutoff of 0.5 but
are adjusted using ROC or Precision-Recall curves to optimize sensitivity and specificity, especially in imbalanced
datasets where chikungunya is compared with dengue or Zika. Deep learning architectures such as Long Short-Term
Memory (LSTM) and Convolutional Neural Networks (CNNs) demonstrate superior ability in capturing nonlinear
temporal-spatial dynamics, but they require large annotated datasets and careful threshold tuning to avoid overfitting
[12]. Multi-Criteria Decision-Making (MCDM) frameworks, including Analytic Hierarchy Process (AHP),
Technique for Order Preference by Similarity to Ideal Solution (TOPSIS), and CRITIC methods, integrate
heterogeneous indicators such as vector density, rainfall, sanitation, and healthcare access to generate composite risk
indices [13], [18]. In these studies, decision thresholds are typically defined by normalized risk scores, where values
above 0.7 are considered “high risk” zones requiring immediate intervention. Geospatial and spatiotemporal
approaches extend this by employing Bayesian hierarchical models and GIS overlays, where evaluation focuses on
spatial accuracy, hit rates, and AUC-PR (Area Under the Precision-Recall curve) to validate hotspot predictions.
Thresholds in these cases are based on probability cutoffs, for example, labeling a grid cell as a hotspot if its
probability of outbreak exceeds 0.8.

Finally, IoT- and edge-based decision-support systems introduce a different evaluation paradigm. Here, latency,
response time, and sensitivity are the most critical metrics, as the objective is to provide real-time monitoring and
rapid alerts [14]. Thresholds are symptom-driven, such as triggering an alert when wearable sensors detect a fever >
38.5 °C in combination with reported joint pain, thereby translating continuous health data into actionable outbreak
warnings [14], [19]. Across all approaches, the choice of metrics and thresholds reflects a trade-off between
interpretability, accuracy, and feasibility, underscoring the need for hybrid frameworks that combine statistical rigor,
machine learning predictive power, and real-time IoT adaptability. Table 3, represents the comparison of metrics,
algorithm and threshold

Table 3. Comparison of metrics, algorithm and threshold

Technique Algorithms Used Evaluation Metrics Decision Thresholds
Statistical Forecasting SARIMA, ARIMA RMSE, MAE Incidence > meant2SD
defines outbreak
Mechanistic & Bayesian SEIR, SIR + MCMC R?, Log-Likelihood, Brier | Ro> 1 with 95% CI
Score
ML Classification RF, SVM, GBT, Accuracy, Precision, Recall, Optimal cutoff via ROC
Logistic Regression F1, AUC-ROC curve (usually 0.5)
DL Prediction CNN, LSTM Accuracy, F1-score, AUC Probability cutoff (tuned,
often 0.5-0.6)
MCDM Risk Mapping AHP, TOPSIS, CRITIC | Composite Risk Score Score > 0.7 = High risk
GIS/Spatiotemporal Bayesian  hierarchical = Spatial accuracy, AUC-PR Hotspot  probability >
models, GIS overlays threshold (e.g., 0.8)
TIoT/Edge Systems Anomaly detection, = Latency, Response Time, Symptom triggers (e.g.,
lightweight ML Sensitivity fever > 38.5°C + pain)
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Challenges in Decision Making

Despite advances in statistical modeling, machine learning, and IoT-driven systems, several practical challenges
hinder the effective deployment of decision-making techniques for chikungunya surveillance. A major limitation is
data scarcity and under-reporting, as many cases go undiagnosed or unrecorded in official health systems,
particularly in low-resource regions [15]. This undermines the accuracy of statistical and ML/DL models, which
depend on large, high-quality datasets for training and validation. Non-stationarity in disecase dynamics, driven by
climate variability, urbanization, and human mobility, further complicates forecasting, requiring models to be
frequently recalibrated to remain reliable [16]. Additionally, the interpretability gap between advanced Al methods
and traditional epidemiological approaches creates barriers for adoption in public health, where transparency and
trust are critical. Geospatial and MCDM models, while transparent, often rely on subjective weighting of indicators,
introducing potential bias into risk assessments [13], [18]. Finally, infrastructure and ethical concerns challenge the
integration of IoT and edge-based systems, as continuous data collection raises privacy risks and requires significant
investment in digital infrastructure [14], [19]. Collectively, these challenges emphasize the need for hybrid, context-
aware frameworks that are not only technically robust but also ethically sound, resource-sensitive, and adaptable to
changing epidemiological landscapes.

Conclusion and Future Scope

Chikungunya remains a significant global health challenge due to its recurrent outbreaks, clinical similarity with
other arboviruses, and long-lasting morbidity. This review has highlighted the wide range of decision-making
techniques applied to chikungunya monitoring, including statistical and time-series models, mechanistic and
Bayesian frameworks, machine learning and deep learning algorithms, multi-criteria decision-making approaches,
geospatial and spatiotemporal models, and IoT/edge-based decision support systems. Each method offers distinct
advantages, such as interpretability, uncertainty quantification, predictive accuracy, transparency, or real-time
adaptability, but also presents limitations in terms of data requirements, computational complexity, and
implementation feasibility. A key finding is that no single technique is sufficient on its own; instead, hybrid
frameworks that integrate complementary strengths are essential for effective chikungunya surveillance and control.
Looking forward, several avenues offer opportunities for advancing decision-making in this domain. First, hybrid
modeling frameworks that combine mechanistic epidemiological insights with Al-driven predictive power can
enhance robustness and adaptability across diverse epidemiological settings. Second, integration of real-time data
streams from IoT devices, participatory surveillance apps, and remote sensing will be crucial for improving outbreak
detection and response times. Third, emphasis must be placed on explainable Al and interpretable models, ensuring
that healthcare professionals and policymakers can trust and act upon algorithmic recommendations. Fourth, context-
aware and resource-sensitive systems are needed, particularly in low- and middle-income countries where
infrastructure limitations constrain large-scale deployment. Finally, the future of chikungunya monitoring lies in
global collaboration and data-sharing initiatives, where interoperable platforms allow integration of clinical,
environmental, and social data to build resilient, scalable, and equitable health surveillance systems. In conclusion,
the convergence of statistical rigor, epidemiological modeling, Al advancements, and digital health innovation holds
promise for transforming chikungunya monitoring. By addressing current challenges and pursuing hybrid,
explainable, and context-aware approaches, researchers and practitioners can develop decision-making frameworks
that not only strengthen outbreak forecasting but also support timely, transparent, and effective public health
interventions.
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