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Abstract 

 

Chikungunya virus (CHIKV) is a rapidly spreading vector-borne disease that poses significant global health risks due 

to its recurrent outbreaks, long-lasting arthralgia, and diagnostic overlap with other arboviruses such as dengue and 

Zika. Effective monitoring and decision-making systems are crucial to improve outbreak prediction, optimize 

resource allocation, and enhance public health responses. This study explores a wide range of decision-making 

techniques and time-series models, mechanistic and Bayesian frameworks, machine learning (ML), deep learning 

(DL), multi-criteria decision-making (MCDM), geospatial and spatiotemporal models, and IoT/edge-enabled 

decision support. We compare their interpretability, data requirements, real-time suitability, and adaptability to low-

resource settings. In addition, we emphasize challenges such as data scarcity, non-stationary dynamics due to climate 

variability, and the need for explainable and equitable AI-driven systems. By synthesizing state-of-the-art methods 

and emerging digital health technologies, this paper provides actionable insights for researchers, healthcare 

practitioners, and policymakers in building robust, scalable, and context-aware monitoring frameworks for 

Chikungunya disease. 

 

Introduction 

 

Chikungunya virus (CHIKV) is a re-emerging mosquito-borne alphavirus transmitted primarily by Aedes aegypti and 

Aedes albopictus, which also serve as vectors for dengue and Zika. Since its discovery in Tanzania in 1952, CHIKV 

has caused recurrent outbreaks across Africa, Asia, and the Americas, affecting millions of people worldwide. 

Although the infection is rarely fatal, it manifests with high fever, rash, and severe joint pain that can persist for 

months or even years, causing long-term disability and economic losses [1]. The chronic arthralgia associated with 

chikungunya has been shown to reduce quality of life, leading to absenteeism and productivity decline, making it a 

pressing public health concern. The global expansion of chikungunya has been facilitated by increased international 

travel, urbanization, and climatic changes that favor mosquito breeding. The World Health Organization (WHO) 

reported ongoing outbreaks in Asia and Africa in 2022, with imported cases spreading to non-endemic regions 

including Europe [2], [3]. Similarly, the European Centre for Disease Prevention and Control (ECDC) tracks 

frequent case importation into European countries. This demonstrates that chikungunya is no longer a localized 

disease but a global health threat requiring transnational surveillance and coordinated control strategies.  Figure 1 

shows cycle of chikungunya mosquito spread. 

 
Figure 1. Chikungunya mosquito spread cycle 
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One of the critical challenges in managing chikungunya is its clinical overlap with other arboviruses such as dengue 

and Zika. Since these infections share symptoms like fever, rash, and joint pain, misdiagnosis is common, 

particularly in co-circulation periods [11]. The researchers have employed statistical and mechanistic models to 

capture the dynamics of chikungunya spread. Statistical methods such as SARIMA have been applied to case data in 

Brazil, producing reliable forecasts of seasonal incidence trends [8]. Mechanistic compartmental models, such as 

SEIR variants, have been used to understand transmission dynamics, estimate epidemiological parameters, and 

evaluate intervention strategies under uncertainty [6]. Bayesian inference further strengthens these models by 

quantifying uncertainty, allowing policymakers to make evidence-based decisions with explicit confidence bounds. 

The rise of machine learning (ML) and deep learning (DL) has transformed outbreak forecasting and clinical 

decision support. Studies have shown that ML classifiers can distinguish between chikungunya, dengue, and Zika 

with high accuracy when trained on clinical and laboratory features. DL architectures such as LSTMs and CNNs 

have been applied to arboviral time series, capturing nonlinear dependencies and enabling multi -modal integration 

with mobility and climate data [12]. These AI-driven approaches provide powerful prediction capabilities but raise 

concerns regarding interpretability, fairness, and generalizability in low-resource settings. 

 

Parallel advances in geospatial and remote sensing technologies have enabled more precise monitoring of 

environmental determinants of chikungunya. Satellite-derived indices of temperature, rainfall, vegetation, and 

urbanization have been used to model mosquito habitat suitability. Bayesian hierarchical spatial models further 

enhance prediction by accounting for spatial dependence and interaction effects, improving hotspot detection 

accuracy [4], [5]. These methods highlight the importance of incorporating ecological and environmental signals into 

outbreak monitoring pipelines. The integration of digital health and IoT-enabled systems marks a new frontier in 

chikungunya surveillance. Wearable sensors and smart devices have been deployed to continuously monitor 

symptoms and environmental exposures [14]. IoT architectures allow real-time data collection, edge processing, and 

cloud-based analytics for outbreak alerts. Moreover, explainable AI ensembles are being designed to ensure 

transparency and user trust in decision-support systems [19]. These innovations are particularly promising in 

resource-limited settings, where conventional surveillance infrastructure is weak. Despite this there is an urgent need 

to systematically study and analyze decision-making techniques for chikungunya monitoring. No single approach is 

sufficient in statistical models provide baseline interpretability, mechanistic models capture causal structure, ML/DL 

methods enhance predictive power, and IoT/edge systems ensure real-time adaptability. A layered, hybrid framework 

that leverages complementary strengths while addressing challenges of data quality, fairness, and explainability will 

be critical to advancing chikungunya surveillance. 

 

Literature Review 

Several studies have explored computational and decision-making techniques for the monitoring and prediction of 

chikungunya outbreaks. Freitas et al. [4] conducted one of the earliest detailed spatio-temporal analyses during the 

2016 outbreak in Rio de Janeiro, applying Bayesian models to identify how socioeconomic and environmental 

conditions influenced disease spread. Similarly, Santos et al. [5] examined the spatial and temporal dynamics of 

chikungunya in Brazil between 2017 and 2023, demonstrating that climatic variability and social vulnerability 

significantly contributed to epidemic intensity. 

 

Mechanistic approaches have also been investigated to capture biological realism in transmission dynamics. Meyer et 

al. [6] employed a Bayesian SEIR framework to estimate epidemiological parameters while explicitly quantifying 

uncertainty, offering policymakers more robust decision support. Expanding on this, Vázquez-Peña et al. [7] 

introduced a relapse-based chikungunya model with Bayesian estimation, highlighting the potential role of 

reinfection in shaping long-term epidemic trajectories. Complementing these approaches, Yakob et al. [8] 

demonstrated that SARIMA models could reliably forecast chikungunya incidence in Brazil, showcasing the utility 

of time-series techniques as baseline forecasting tools. With the rise of digital epidemiology, studies have begun 

leveraging internet-based data streams for early outbreak detection. Verma et al. [9] showed that Google Trends 

could predict acute febrile illness signals, including chikungunya, with week-level lead times compared to traditional 

surveillance. Similarly, Miller et al. [10] validated the use of Google search data as faster outbreak indicators, 

emphasizing the value of online behavior in enhancing real-time surveillance. 

 

Machine learning (ML) and deep learning (DL) have been increasingly applied for chikungunya detection and 

diagnosis. Arrubla-Hoyos et al. [11] developed ML classifiers capable of distinguishing chikungunya from dengue 

and Zika with high accuracy, thus addressing challenges of clinical misdiagnosis. Da Silva Neto et al. [12] conducted 

a systematic review of ML/DL methods, highlighting their promise in arboviral diagnosis while noting the 

challenges of data scarcity and model generalization. Abdallah et al. [13] advanced this area by integrating multi -
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criteria decision-making (AHP) with transfer learning, resulting in a hybrid system for forecasting multiple 

arboviruses with improved accuracy and interpretability. Beyond predictive modeling, IoT-based systems have 

emerged as practical tools for real-time health monitoring. Sood and Mahajan [14] proposed a wearable IoT-enabled 

healthcare system for detecting and monitoring chikungunya symptoms, demonstrating the feasibility of integrating 

cyber-physical systems in outbreak response. Pley et al. [15] provided a broader perspective, reviewing digital 

innovations in vector-borne disease management and emphasizing the importance of integrating big data, IoT, and 

decision-support technologies. 

 

Geospatial and remote sensing approaches further enrich chikungunya surveillance. Palo et al. [17] employed GIS 

and satellite-derived data to map mosquito risk zones, offering a cost-effective method for large-scale monitoring. 

Similarly, Nuthammachot et al. [18] integrated MCDM with GIS to generate transparent risk maps, thereby 

supporting policymakers in targeting high-risk areas. Finally, Cheah et al. [19] emphasized the importance of 

explainable AI ensembles in infectious disease decision support, ensuring that advanced ML systems remain 

interpretable and trustworthy for public health applications. Studies demonstrate the diversity of decision-making 

approaches for chikungunya monitoring. While statistical models such as SARIMA provide robust baselines, 

mechanistic and Bayesian approaches offer biologically grounded insights. Meanwhile, ML/DL methods deliver high 

predictive accuracy, MCDM ensures transparency, and IoT/GIS systems extend monitoring into real -time and 

spatially explicit domains. Table 1 represents a finding of existing approaches. 

 

Table 1. Findings of existing approaches 

Author(s) Method/Model Key Findings 

Freitas et al. [4] Bayesian Spatio-temporal Models showed environmental and socioeconomic drivers 

Santos et al. [5] Spatio-temporal Analysis identified climate and vulnerability factors 

Meyer et al. [6] Bayesian SEIR Models Estimated epidemiological parameters with 

uncertainty awareness 

Vázquez-Pena, et al. [7] Bayesian relapse model Extended SEIR with relapse cases 

Yakob et al. [8] SARIMA Models Predicted chikungunya incidence reliably in Brazil 

Verma et al. [9] Google Trends Analysis Forecasted acute febrile illness using online search 

data 

Miller et al. [10] Google Search Data Showed faster chikungunya indicators than 

traditional surveillance 

Arrubla-Hoyos et al. [11] Machine Learning Classifiers Differentiated chikungunya, dengue, Zika with 

high accuracy 

da Silva Neto et al. [12] ML/DL Systematic Review Highlighted performance of AI in arbovirus 

diagnosis 

Abdallah et al. [13] MCDM + Transfer Learning Combined AHP and ML for multi-disease outbreak 

forecasting 

Sood & Mahajan [14] IoT Wearable System Demonstrated IoT-based healthcare monitoring for 

chikungunya 

Pley et al. [15] Digital Innovation Review Reviewed technological innovations for vector-

borne disease control 

Palo et al. [17] GIS + Remote Sensing Predicted mosquito risk zones using GIS-based 

models 

Nuthammachot et al. [18] GIS + MCDM Applied multi-criteria GIS methods for risk 

assessment 

Cheah et al. [19] Explainable AI Ensembles Discussed role of AI ensembles for infectious 

disease decision support 

  

Decision Making Techniques 

 

Decision-making techniques for chikungunya monitoring encompass a wide range of computational, analytical, and 

digital approaches aimed at forecasting outbreaks, guiding interventions, and supporting clinical and public health 

decisions. Traditional statistical and time-series models such as ARIMA and SARIMA provide baseline forecasts by 

capturing seasonal incidence trends, while mechanistic and Bayesian models (e.g., SEIR frameworks) integrate 

biological transmission dynamics with uncertainty quantification to support epidemiological planning. More 
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recently, machine learning (ML) and deep learning (DL) methods have enabled powerful predictive modeling and 

differential diagnosis using multimodal data sources, though these approaches often face challenges of 

interpretability and data scarcity. Figure 2, defines the Layered Framework of Decision-Making Techniques 

 

 
Figure 2. Layered Framework of Decision-Making Techniques 

 

In parallel, multi-criteria decision-making (MCDM) frameworks combined with GIS-based risk mapping offer 

transparent and stakeholder-oriented tools for hotspot identification and resource prioritization. Furthermore, IoT and 

edge-enabled systems have introduced real-time surveillance capabilities, integrating wearable sensors and 

participatory data into outbreak monitoring pipelines.  

 

3.1 Statistical and Time-Series Models (ARIMA/SARIMA): These models use historical case data to forecast future 

incidence trends. SARIMA, for example, captures both seasonality and temporal autocorrelation, making it useful for 

arboviruses with seasonal outbreaks. They are simple, interpretable, and effective in low-resource settings but are 

limited in handling nonlinear dynamics and external covariates [8]. 

 

3.2 Mechanistic & Bayesian Models: Mechanistic models (e.g., SEIR) explicitly incorporate biological processes 

such as infection, recovery, and mosquito transmission. Bayesian inference enhances these models by quantifying 

uncertainty and integrating heterogeneous data sources. Such models are powerful for understanding disease 

dynamics and testing intervention scenarios but require large datasets and accurate parameterization [6], [7].  Table 2, 

shows chikungunya decision-making studies are evaluated, and shows that no single decision-making technique is 

sufficient on its own. 

 

Table 2. Comparison of Technique for Chikungunya Monitoring 

Technique Strengths Limitations 

Statistical / Time-Series (ARIMA, 

SARIMA 

Simple, interpretable, requires fewer 

data, effective for seasonal trends 

Limited to linear patterns, weak in 

handling exogenous variables 

Mechanistic & Bayesian (SEIR, 

Bayesian inference) 

Captures biological realism, allows 

counterfactuals, quantifies uncertainty 

High data requirements, parameter 

identifiability issues 

Machine Learning (RF, SVM, 

Gradient Boosting)  

Handles multimodal data, strong 

predictive accuracy 

Risk of overfitting, limited 

interpretability 

Deep Learning (CNN, LSTM, 

Hybrid)  

Learns nonlinear patterns, integrates 

temporal and spatial data 

Data-hungry, computationally 

intensive, black-box nature 
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Multi-Criteria Decision-Making 

(AHP, TOPSIS, CRITIC)  

Transparent, stakeholder-friendly, 

integrates multiple indicators 

Subjective weighting, static unless 

updated 

Geospatial / Spatiotemporal Models 

(Bayesian Hierarchical, GIS) 

Explicitly models space-time dynamics, 

integrates satellite/environmental data 

Requires high-quality geospatial 

inputs, complex calibration 

IoT/Edge-Based Decision Support Real-time monitoring, supports smart 

healthcare, scalable 

Data privacy, cost, interoperability 

challenges 

3.3 Machine Learning: ML methods such as Random Forests, Support Vector Machines, and Gradient Boosting can 

classify chikungunya cases and predict outbreaks using multimodal data—clinical, environmental, and 

socioeconomic. They provide flexibility and strong predictive performance but risk overfitting when data is limited. 

Moreover, lack of transparency may hinder adoption in clinical settings [11]. 

 

3.4 Deep Learning: DL architectures (e.g., CNNs, LSTMs) can capture complex nonlinear patterns and temporal 

dependencies. They are effective in integrating large-scale data such as weather, mobility, and mosquito indices. DL 

has shown promise in arboviral forecasting and differential diagnosis, but its major drawbacks include high data 

requirements and low interpretability, which limit its direct application in public health decision -making [12]. 

 

3.5 Multi-Criteria Decision-Making: MCDM frameworks such as AHP (Analytic Hierarchy Process), TOPSIS, and 

CRITIC combine multiple indicators—vector density, climate anomalies, population density, sanitation, and 

healthcare accessibility—into a composite risk score. These methods are transparent and stakeholder-friendly, 

making them suitable for health authorities. However, they rely heavily on subjective criteria weighting and may 

need frequent recalibration [13], [18]. 

3.6 Geospatial & Spatiotemporal Models: Geospatial modelling integrates satellite data, remote sensing, and GIS to 

produce risk maps and hotspot predictions. Bayesian hierarchical spatiotemporal models account for spatial 

dependence and improve local intervention planning. These models are valuable for guiding targeted mosquito 

control but often depend on access to high-quality geospatial datasets [4], [5], [17]. 

3.7 IoT/Edge-Based Decision Support Systems: IoT-enabled wearables and smart sensors allow real-time symptom 

monitoring and environmental surveillance. Edge computing reduces latency by processing data locally, enabling 

immediate outbreak alerts or triage decisions. These systems enhance scalability and personalization but face 

challenges in data privacy, interoperability, and cost of deployment in low-resource settings [14], [19].  Figure 3, 

represents the radar chart comparison of various decision-making techniques. 

 

 
Figure 3. Comparison of Decision-Making Techniques 
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Evaluation Metrics and Decision Thresholds 

 

Evaluating decision-making techniques for chikungunya monitoring requires a careful balance between accuracy, 

interpretability, and timeliness. Statistical forecasting models such as ARIMA and SARIMA typically rely on error -

based metrics including Mean Absolute Error (MAE) and Root Mean Squared Error (RMSE) to quantify predictive 

accuracy, while outbreak detection is triggered when incidence rates exceed epidemiological thresholds, often 

defined as the baseline mean plus two standard deviations [8], [9]. Mechanistic and Bayesian approaches, including 

SEIR and SIR models with Markov Chain Monte Carlo (MCMC) estimation, employ R² values, log-likelihood 

scores, and Brier scores to measure model fit and probabilistic forecasting quality. In these cases, decision thresholds 

are set on epidemiological parameters such as the basic reproduction number (R₀); for instance, interventions are 

initiated if the probability of R₀ > 1 exceeds a 95% confidence interval [6], [7].  

 

Machine learning (ML) and deep learning (DL) models, widely applied for chikungunya differential diagnosis and 

outbreak forecasting, employ classification-oriented metrics such as Accuracy, Precision, Recall, F1-score, and Area 

Under the ROC Curve (AUC-ROC) [11], [12]. Thresholds for classification are often set at a default cutoff of 0.5 but 

are adjusted using ROC or Precision-Recall curves to optimize sensitivity and specificity, especially in imbalanced 

datasets where chikungunya is compared with dengue or Zika. Deep learning architectures such as Long Short -Term 

Memory (LSTM) and Convolutional Neural Networks (CNNs) demonstrate superior ability in capturing nonlinear 

temporal-spatial dynamics, but they require large annotated datasets and careful threshold tuning to avoid overfitting 

[12]. Multi-Criteria Decision-Making (MCDM) frameworks, including Analytic Hierarchy Process (AHP), 

Technique for Order Preference by Similarity to Ideal Solution (TOPSIS), and CRITIC methods, integrate 

heterogeneous indicators such as vector density, rainfall, sanitation, and healthcare access to generate composite risk 

indices [13], [18]. In these studies, decision thresholds are typically defined by normalized risk scores, where values 

above 0.7 are considered “high risk” zones requiring immediate intervention. Geospatial and spatiotemporal 

approaches extend this by employing Bayesian hierarchical models and GIS overlays, where evaluation focuses on 

spatial accuracy, hit rates, and AUC-PR (Area Under the Precision-Recall curve) to validate hotspot predictions. 

Thresholds in these cases are based on probability cutoffs, for example, labeling a grid cell as a hotspot if its 

probability of outbreak exceeds 0.8. 

 

Finally, IoT- and edge-based decision-support systems introduce a different evaluation paradigm. Here, latency, 

response time, and sensitivity are the most critical metrics, as the objective is to provide real -time monitoring and 

rapid alerts [14]. Thresholds are symptom-driven, such as triggering an alert when wearable sensors detect a fever > 

38.5 °C in combination with reported joint pain, thereby translating continuous health data into actionable outbreak 

warnings [14], [19]. Across all approaches, the choice of metrics and thresholds reflects a trade-off between 

interpretability, accuracy, and feasibility, underscoring the need for hybrid frameworks that combine statistical rigor, 

machine learning predictive power, and real-time IoT adaptability. Table 3, represents the comparison of metrics, 

algorithm and threshold   

 

Table 3. Comparison of metrics, algorithm and threshold 

Technique Algorithms Used Evaluation Metrics Decision Thresholds 

Statistical Forecasting SARIMA, ARIMA RMSE, MAE Incidence > mean+2SD 

defines outbreak 

Mechanistic & Bayesian SEIR, SIR + MCMC R², Log-Likelihood, Brier 

Score 

R₀ > 1 with 95% CI 

ML Classification RF, SVM, GBT, 

Logistic Regression 

Accuracy, Precision, Recall, 

F1, AUC-ROC 

Optimal cutoff via ROC 

curve (usually 0.5) 

DL Prediction CNN, LSTM Accuracy, F1-score, AUC Probability cutoff (tuned, 

often 0.5–0.6) 

MCDM Risk Mapping AHP, TOPSIS, CRITIC Composite Risk Score Score ≥ 0.7 = High risk 

GIS/Spatiotemporal Bayesian hierarchical 

models, GIS overlays 

Spatial accuracy, AUC-PR Hotspot probability > 

threshold (e.g., 0.8) 

IoT/Edge Systems Anomaly detection, 

lightweight ML 

Latency, Response Time, 

Sensitivity 

Symptom triggers (e.g., 

fever > 38.5°C + pain) 

 

 

 

 



Journal for Re Attach Therapy and Developmental Diversities 

eISSN: 2589-7799 

2023 December; 6(10s)(2) : 2320-2327 

 

 

 

2326   https://jrtdd.com 

Challenges in Decision Making 

 

Despite advances in statistical modeling, machine learning, and IoT-driven systems, several practical challenges 

hinder the effective deployment of decision-making techniques for chikungunya surveillance. A major limitation is 

data scarcity and under-reporting, as many cases go undiagnosed or unrecorded in official health systems, 

particularly in low-resource regions [15]. This undermines the accuracy of statistical and ML/DL models, which 

depend on large, high-quality datasets for training and validation. Non-stationarity in disease dynamics, driven by 

climate variability, urbanization, and human mobility, further complicates forecasting, requiring models to be 

frequently recalibrated to remain reliable [16]. Additionally, the interpretability gap between advanced AI methods 

and traditional epidemiological approaches creates barriers for adoption in public health, where transparency and 

trust are critical. Geospatial and MCDM models, while transparent, often rely on subjective weighting of indicators, 

introducing potential bias into risk assessments [13], [18]. Finally, infrastructure and ethical concerns challenge the 

integration of IoT and edge-based systems, as continuous data collection raises privacy risks and requires significant 

investment in digital infrastructure [14], [19]. Collectively, these challenges emphasize the need for hybrid, context -

aware frameworks that are not only technically robust but also ethically sound, resource-sensitive, and adaptable to 

changing epidemiological landscapes.  

 

Conclusion and Future Scope 

 

Chikungunya remains a significant global health challenge due to its recurrent outbreaks, clinical similarity with 

other arboviruses, and long-lasting morbidity. This review has highlighted the wide range of decision-making 

techniques applied to chikungunya monitoring, including statistical and time-series models, mechanistic and 

Bayesian frameworks, machine learning and deep learning algorithms, multi-criteria decision-making approaches, 

geospatial and spatiotemporal models, and IoT/edge-based decision support systems. Each method offers distinct 

advantages, such as interpretability, uncertainty quantification, predictive accuracy, transparency, or real-time 

adaptability, but also presents limitations in terms of data requirements, computational complexity, and 

implementation feasibility. A key finding is that no single technique is sufficient on its own; instead, hybrid 

frameworks that integrate complementary strengths are essential for effective chikungunya surveillance and control. 

Looking forward, several avenues offer opportunities for advancing decision-making in this domain. First, hybrid 

modeling frameworks that combine mechanistic epidemiological insights with AI-driven predictive power can 

enhance robustness and adaptability across diverse epidemiological settings. Second, integration of real -time data 

streams from IoT devices, participatory surveillance apps, and remote sensing will be crucial for improving outbreak 

detection and response times. Third, emphasis must be placed on explainable AI and interpretable models, ensuring 

that healthcare professionals and policymakers can trust and act upon algorithmic recommendations. Fourth, context -

aware and resource-sensitive systems are needed, particularly in low- and middle-income countries where 

infrastructure limitations constrain large-scale deployment. Finally, the future of chikungunya monitoring lies in 

global collaboration and data-sharing initiatives, where interoperable platforms allow integration of clinical, 

environmental, and social data to build resilient, scalable, and equitable health surveillance systems.  In conclusion, 

the convergence of statistical rigor, epidemiological modeling, AI advancements, and digital health innovation holds 

promise for transforming chikungunya monitoring. By addressing current challenges and pursuing hybrid, 

explainable, and context-aware approaches, researchers and practitioners can develop decision-making frameworks 

that not only strengthen outbreak forecasting but also support timely, transparent, and effective public health 

interventions. 
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