Green Synthesis And Characterization of Copper Oxide And Cobalt Oxides Nanoparticles Using Moringa Oleifera Fruit Extract

Main Article Content

Shital Shivaji Bankar
Anita Kashinath Kshirsagar
Priyanka Ganesh Bhutekar
Shivaji Baburao Munde

Abstract

Currently, researchers widely use natural resources as reducing and stabilizing agents to synthesize copper oxide nanoparticles (CuO-NPs) and cobalt oxide nanoparticles (CoO NPs) due to their eco-friendly, easy, affordable, and viable characteristics. Non-toxic and cost-effective CuO nanoparticles were produced utilizing an eco-friendly method involving moringa oleifera fruit extract. The UV-visible spectroscopy technique was used to uncover the optical characteristics of copper oxide and cobalt oxide nanoparticles synthesized using green methods. The study used Fourier transform infrared spectroscopy (FTIR) to analyze the active biomolecules and functional groups involved in the biological reduction of metal ions into nano-scale CuO and CoO particles. X-ray diffraction experiments were conducted to examine the structure, phase, and crystalline planes of nanoparticles. The experimental findings demonstrate that moringa oleifera fruit can be used as a cost-effective and advantageous bio-resource for producing metal oxide nanoparticles. These standard nanoparticles have potential applications in various domains such as medicinal, industrial, and environmental. The bioactivity and potential uses of an environmentally friendly metal oxide nanoparticle were established.

Article Details

How to Cite
Shital Shivaji Bankar, Anita Kashinath Kshirsagar, Priyanka Ganesh Bhutekar, & Shivaji Baburao Munde. (2023). Green Synthesis And Characterization of Copper Oxide And Cobalt Oxides Nanoparticles Using Moringa Oleifera Fruit Extract. Journal for ReAttach Therapy and Developmental Diversities, 6(9s), 1944–1950. https://doi.org/10.53555/jrtdd.v6i9s.2812
Section
Articles
Author Biographies

Shital Shivaji Bankar

P.G. Department of Chemistry, Jalna Education Society’s, R. G. Bagdia Arts, S. B. Lakhotia Commerce, and R. Bezonji Science College, Jalna-431203 (M.S.), 4*Department of Chemistry, Shri Muktanand College Gangapur, Aurangabad -431001 (M.S.)

Anita Kashinath Kshirsagar

P.G. Department of Chemistry, Jalna Education Society’s, R. G. Bagdia Arts, S. B. Lakhotia Commerce, and R. Bezonji Science College, Jalna-431203 (M.S.), 4*Department of Chemistry, Shri Muktanand College Gangapur, Aurangabad -431001 (M.S.)

Priyanka Ganesh Bhutekar

P.G. Department of Chemistry, Jalna Education Society’s, R. G. Bagdia Arts, S. B. Lakhotia Commerce, and R. Bezonji Science College, Jalna-431203 (M.S.), 4*Department of Chemistry, Shri Muktanand College Gangapur, Aurangabad -431001 (M.S.)

Shivaji Baburao Munde

P.G. Department of Chemistry, Jalna Education Society’s, R. G. Bagdia Arts, S. B. Lakhotia Commerce, and R. Bezonji Science College, Jalna-431203 (M.S.), 4*Department of Chemistry, Shri Muktanand College Gangapur, Aurangabad -431001 (M.S.)

References

J. Jeevanandam, A. Barhoum, Y. S. Chan, A. Dufresne and M. K. Danquah, Review on nanoparticles and nanostructured materials: history, sources, toxicity and regulations, Beilstein J Nanotechnol, 9 (2018), 1050-1074.

H. Hou, G. Shao, W. Yang and Wai-Yeung Wong, One-dimensional, mesoporous inorganic nanostructures and their applications in energy, sensor, catalysis and adsorption, Prog mater Sci, 113 (2020) 100671. http://doi.org/10.1016/j.pmatsci. 2020.100671.

N. Baig, I. Kammakakam and W. Falath, Nanomaterials: A Review of Synthesis Methods, Properties, Recent Progress, and Challenges, Mater Adv, 2(6) (2021)1821- 1871. http://doi.org/10.1039/D0MA00807A.

K. Banerjee and H. Madhyastha, Immunology and Nanotechnology: Effects and Affects. In: V. K. Arivarasan, K. Loganathan, P. Janarthanan(eds), Nanotechnology in the Life Science. Springer, 2021. http://doi.org/10.1007/978-3-030-61021-02.

Z. Shamasi, A. Es-haghi, M. F. Taghavizadeh Yazdi, M. S. Amiri and M. Homayouni-Tabrizi, Role of Rubia tinctorum in the synthesis of Zinc oxide nanoparticles and apoptosis induction in breast cancer cell line, Nanomed J, 8(1) (2021), 65-72. http://doi.org/10.22038/nmj.2021.08.07.

A. Muthuvel, M. Jothibas and C. Manoharan, Synthesis of copper oxide nanoparticles by chemical and biogenic methods: photocatalytic degradation and in vitro antioxidant activity, Nanotechnol Environ Eng, 5(2) (2020). http://doi.org/10. 1007/s41204-020-00078-w

S. Rajesh kumar and P. Naik, Synthesis and biomedical applications of Cerium oxide nanoparticles–A Review, Biotechnol Rep, 17 (2018) 1-5. http://doi.org/10.1016/ j.btre.2017.11.008.

G. Song, N. Cheng, J. Zhang, H. Huang, Y. Yuan, X. He, Y. Luo and K. Huang, Nanoscale Cerium Oxide: Synthesis, Biocatalytic, Mechanism and Applications, Catalysts, 11(9) (2021), 1-15. http://doi.org/10.3390/catal11091123.

F. Charbgoo, M. Ramezani and M. Darroudi, Bio-sensing Applications of Cerium Oxide Nanoparticles: Advantages and Disadvantages, Biosens & Bioelectron, 96 (2017), 33-43. http://doi.org/10.1016/j.bios.2017.04.037.

C. Walkey, S. Das and S. Seal, Catalytic properties and biomedical applications of cerium oxide nanoparticles, Environ Sci, 2(1) (2015), 33-53. http://doi.org/10.1039/ C4EN00138A.

Ayman A. Ali, Sahar R. EL-Sayed, Sayed A. Shama, Talaat Y. Mohamed and Alaa S. Amin, Fabrication and characterization of cerium oxide nanoparticles for the removal of naphthol green B dye, DesalinWater Treat, 204 (2020), 124-135. http://doi.org/10. 5004/dwt.202026245.

M. Shaterian, A. Rezvani and A.R. Abbasian, Controlled synthesis and self-assembly of ZnFe2O4 nanoparticles into microsphere by solvothermal method, Mater Res Express, 6(12) (2020), 1250. http://doi.org/10.1088/2053-1591/ab65e0.

H. Balavi, S. Samadanian, M. Mehrabani-Zeinabad and M. Edrissi, Preparation and optimization of CeO2 nanoparticles and its application in photocatalytic degradation of Reactive Orange 16 dye, Powder Technol, 249 (2013), 549-555. http://doi.org/10. 1016/j.potec.2013.09.021.

M. Malamatari, A. Charisi, S. Malammataris, K. Kachrimanis and I. Nikolakais, Spray drying for the preparation of nanoparticles-based drug formulation as dry powders for inhalation, Processes, 8(7) 788 (2020), 1-27. http://doi.org/10.33390/ pr8070788.

S. Harini, A. Aswini, S. C. Kale, J. Narawane, J. Patel, S. Masurkar and S.s Ruikar, Microwave-assisted solvothermal Synthesis of Tungstan oxide Nanoparticles for microbial inhibition, Int J Curr Res Rev, 13(02) (2010), 76-69. http://doi.org/10/ 31782/ IJCRR.2021.13226.

D. B. Bharti and A. V. Bharati, Synthesis of ZnO nanoparticles using a hydrothermal method and a study its optical activity, Luminescence, 32(3) (2017), 317-320. http://doi.org/10.1002/bio.3180.

S. Tambat, S. Umale and S. Sontakke, Photocatalytic degradation of Milling Yellow dye using Sol-gel synthesized CeO2, Mater Res Bull.,76 (2016), 466-472. http://doi. morg /10.1016/J.MATERRESBULL.2016.01.010.

S. Pirtarighat, M. Ghannadnia and S. Baghshahi, Green synthesis of silver nanoparticles using the plant extract of Salvia spinosa grown in vitro and their antibacterial activity assessment, J Nanostruct Chem, 9 (2019), 1-9. http://doi.org/10 .1007/s40097-018-0291-4.

G. A. Naikoo, M. Mustaqeem, I. U. Hassan,T. Awan, F. Arshad, H. Salim and A. Qurashi, Bioinspired and green synthesis of nanoparticles from plant extracts with antiviral and antimicrobial properties: A critical review, J Saudi Chem Soc, 25(9) (2021), 101304. http://doi.org/10.1016/j.jscs.2021.101304.

Y. Kato and M. Suzuki, Synthesis of metal nanoparticles by Microorganisms, crystals, 10(7) (2020), 1-20. http://doi.org/10.3390/cryst10070589.

I. Ghiuta, C. Croitoru, J. Kost, R. Wenkert and D. Munteanu, Becteria mediated synthesis of silver and silver chloride nanoparticles and their antimicrobial activity, Appl Sci, 11(7) (2021), 3134. http://doi.org/10.3390/app11073134.

K. O Iwuozor, L. A. Ogunfowora and I. P. Oyekunle, Review on sugarcane-mediated nanoparticles synthesis: a green approach, Sugar Tech, (2021), 1-12. http://doi.org/10. 1007/s12355-021-01038-7.

D. Dutta, Mukherjee R, Patra M, et al. Green synthesized cerium oxide nanoparticle: a prospective drug against oxidative harm, Colloids Surf B Bio interfaces, 147 (2016), 45-53. http://doi.org/10.1016/j. colsurfb.2016.07.045.

Dizaj, Solmaz Maleki, Farzaneh Lotfipour, Mohammad Barzegar-Jalali, Mohammad Hossein Zarrintan, and Khosro Adibkia. "Antimicrobial activity of the metals and metal oxide nanoparticles." Materials Science and Engineering: C 44 (2014): 278-284.

Q. Maqbool, M. Nazar, S. Naz, T. Hussain, N. Jabeen, R. Kausar, S. Anwaar, F. Abbas and T. Jan, Antimicrobial potential of green synthesized CeO2 nanoparticles from Olea europaea leaf extract, Int J Nanomedicine, 11 (2016), 5015-5025. http://doi.org/10.2147/IJN. S113508.

A. Miri, M. Darruodi and M. Sarani, Biosynthesis of cerium oxide nanoparticles and its cytotoxicity survey against colon cancer cell line, Appl Organometal Chem, (2019), 1-7. http://doi.org/10.1002/aoc.5308.

Stanić, Vojislav, and Sladjana B. Tanasković. "Antibacterial activity of metal oxide nanoparticles." In Nanotoxicity, pp. 241-274. Elsevier, 2020.