A Comprehensive Review of Synthetic compound and Conventional Antibiotics in Antibacterial Resistance:

Main Article Content

Avinash Mishra
Umesh Kumar
Ashok Kumar
Satish Kumar Sharma

Abstract

Antibiotic resistance poses a formidable challenge in contemporary healthcare, necessitating innovative strategies to combat resistant pathogens. One promising approach involves the development of synthesized chemical compounds tailored to overcome resistance mechanisms and enhance antimicrobial efficacy. This review synthesizes current research on the design, synthesis, and evaluation of such compounds as potential therapeutics against antibiotic-resistant bacteria. The design of synthesized compounds involves a rational approach, leveraging structural insights into bacterial resistance mechanisms and targeting essential cellular processes. Chemical synthesis techniques enable the creation of diverse compound libraries with varied structural scaffolds and functional groups, optimizing antimicrobial activity and pharmacokinetic properties. Evaluation of synthesized compounds encompasses in vitro and in vivo studies to assess efficacy, toxicity, and mechanisms of action. These studies reveal promising candidates with potent antimicrobial activity against multidrug-resistant pathogens, including Gram-positive and Gram-negative bacteria, as well as emerging threats such as carbapenem-resistant Enterobacteriaceae (CRE) and methicillin-resistant Staphylococcus aureus (MRSA). Moreover, synthesized compounds exhibit synergistic effects when combined with existing antibiotics, overcoming resistance mechanisms, and restoring their efficacy. Combinatorial approaches also mitigate the development of resistance and broaden the spectrum of antimicrobial activity. Overall, the development of synthesized chemical compounds represents a valuable strategy in addressing antibiotic resistance and revitalizing the antimicrobial armamentarium. Future research directions include further optimization of compound properties, elucidation of resistance mechanisms, and clinical trials to assess safety and efficacy in human populations. With continued innovation and collaboration across disciplines, synthesized compounds hold promise as a vital tool in the ongoing battle against antibiotic-resistant infections.

Article Details

How to Cite
Avinash Mishra, Umesh Kumar, Ashok Kumar, & Satish Kumar Sharma. (2023). A Comprehensive Review of Synthetic compound and Conventional Antibiotics in Antibacterial Resistance:. Journal for ReAttach Therapy and Developmental Diversities, 6(9s), 1967–1986. https://doi.org/10.53555/jrtdd.v6i9s.2850
Section
Articles
Author Biographies

Avinash Mishra

Department of Pharmaceutical Chemistry, Glocal university mirzapur Pole, Saharanpur Uttar Pradesh India 

Umesh Kumar

Department of Pharmaceutical Chemistry, Glocal university mirzapur Pole, Saharanpur Uttar Pradesh India

Ashok Kumar

Department of Pharmacology Glocal university mirzapur Pole, Saharanpur Uttar Pradesh India.

Satish Kumar Sharma

Department of Pharmacology Glocal university mirzapur Pole, Saharanpur Uttar Pradesh India.

References

Almakki, A., Jumas-Bilak, E., Marchandin, H., & Licznar-Fajardo, P. (2019, June). Antibiotic resistance in urban runoff. The Science of the total environment, 667, 64-76.

Aminov, R. I. (2009, December). The role of antibiotics and antibiotic resistance in nature. Environmental microbiology, 11(12), 2970-88.

Antibiotic resistance. (2017, November). British dental journal, 223(9), 692.

Baquero, F. (2021, November). Threats of antibiotic resistance: an obliged reappraisal. International microbiology : the official journal of the Spanish Society for Microbiology, 24(4), 499-506.

BARBARA, K. O. (2019, December). Antibiotic Resistance Among Uropathogenic Escherichia coli. Polish Journal of Microbiology, 68, 403–415. doi:10.33073/pjm-2019-048

Ben Maamar, S., Hu, J., & Hartmann, E. M. (2020, January). Implications of indoor microbial ecology and evolution on antibiotic resistance. Journal of exposure science & environmental epidemiology, 30(1), 1-15.

Bengtsson-Palme, J., Kristiansson, E., & Larsson, D. G. (2018, January). Environmental factors influencing the development and spread of antibiotic resistance. FEMS microbiology reviews, 42(1).

Berlanga, M., Montero, M. T., Hernández-Borrell, J., & Viñas, M. (2004, June). Influence of the cell wall on ciprofloxacin susceptibility in selected wild-type Gram-negative and Gram-positive bacteria. International Journal of Antimicrobial Agents, 23, 627–630. doi:10.1016/j.ijantimicag.2003.12.015

Bombaywala, S., Mandpe, A., Paliya, S., & Kumar, S. (2021, May). Antibiotic resistance in the environment: a critical insight on its occurrence, fate, and eco-toxicity. Environmental science and pollution research international, 28(20), 24889-24916.

Bonfiglio, G., & Furneri, P. M. (2001, February). Novel streptogramin antibiotics. Expert Opinion on Investigational Drugs, 10, 185–198. doi:10.1517/13543784.10.2.185

Bonnedahl, J., & Järhult, J. D. (2014, May). Antibiotic resistance in wild birds. Upsala journal of medical sciences, 119(2), 113-6.

Caron, F., Wehrle, V., & Etienne, M. (2017, June). The comeback of trimethoprim in France. Médecine et Maladies Infectieuses, 47, 253–260. doi:10.1016/j.medmal.2016.12.001

Caruso, G. (2018, July). Antibiotic Resistance in Escherichia coli from Farm Livestock and Related Analytical Methods: A Review. Journal of AOAC International, 101(4), 916-922.

Cunha, C. B. (2018, September). Antimicrobial Stewardship Programs: Principles and Practice. The Medical clinics of North America, 102(5), 797-803.

Davies, J., & Davies, D. (2010, September). Origins and evolution of antibiotic resistance. Microbiology and molecular biology reviews : MMBR, 74(3), 417-33.

Ding, D., Wang, B., Zhang, X., Zhang, J., Zhang, H., Liu, X., . . . Yu, Z. (2023, April). The spread of antibiotic resistance to humans and potential protection strategies. Ecotoxicology and environmental safety, 254, 114734.

Dodds, D. R. (2017, June). Antibiotic resistance: A current epilogue. Biochemical pharmacology, 134, 139-146.

Eisenreich, W., Rudel, T., Heesemann, J., & Goebel, W. (2022). Link Between Antibiotic Persistence and Antibiotic Resistance in Bacterial Pathogens. Frontiers in cellular and infection microbiology, 12, 900848.

Esberard, M., Hallier, M., Liu, W., Morvan, C., Bossi, L., Figueroa-Bossi, N., . . . Bouloc, P. (2022, May). 6S RNA-Dependent Susceptibility to RNA Polymerase Inhibitors. Antimicrobial Agents and Chemotherapy, 66. doi:10.1128/aac.02435-21

Feßler, A. T., Wang, Y., Wu, C., & Schwarz, S. (2018, September). Mobile lincosamide resistance genes in staphylococci. Plasmid, 99, 22–31. doi:10.1016/j.plasmid.2018.06.002

Ghosh, D., Veeraraghavan, B., Elangovan, R., & Vivekanandan, P. (2020, January). Antibiotic Resistance and Epigenetics: More to It than Meets the Eye. Antimicrobial agents and chemotherapy, 64(2).

Graf, F. E., Palm, M., Warringer, J., & Farewell, A. (2019, February). Inhibiting conjugation as a tool in the fight against antibiotic resistance. Drug development research, 80(1), 19-23.

Hershberg, R. (2017, August). Antibiotic-Independent Adaptive Effects of Antibiotic Resistance Mutations. Trends in genetics : TIG, 33(8), 521-528.

Huemer, M., Mairpady Shambat, S., Brugger, S. D., & Zinkernagel, A. S. (2020, December). Antibiotic resistance and persistence-Implications for human health and treatment perspectives. EMBO reports, 21(12), e51034.

Jain, P., Saravanan, C., & Singh, S. K. (2013, February). Sulphonamides: Deserving class as MMP inhibitors? European Journal of Medicinal Chemistry, 60, 89–100. doi:10.1016/j.ejmech.2012.10.016

Larsson, D. G., & Flach, C.-F. (2022, May). Antibiotic resistance in the environment. Nature reviews. Microbiology, 20(5), 257-269.

Lenski, R. E. (1997). The cost of antibiotic resistance–from the perspective of a bacterium. Ciba Foundation symposium, 207, 131-40; discussion 141-51.

Lerminiaux, N. A., & Cameron, A. D. (2019, January). Horizontal transfer of antibiotic resistance genes in clinical environments. Canadian journal of microbiology, 65(1), 34-44.

Letten, A. D., Hall, A. R., & Levine, J. M. (2021, April). Using ecological coexistence theory to understand antibiotic resistance and microbial competition. Nature ecology & evolution, 5(4), 431-441.

Lin, Z., Yuan, T., Zhou, L., Cheng, S., Qu, X., Lu, P., & Feng, Q. (2021, May). Impact factors of the accumulation, migration and spread of antibiotic resistance in the environment. Environmental geochemistry and health, 43(5), 1741-1758.

Lukačišinová, M., & Bollenbach, T. (2017, August). Toward a quantitative understanding of antibiotic resistance evolution. Current opinion in biotechnology, 46, 90-97.

Maia, L. F., De Oliveira, V. E., Edwards, H. G., & De Oliveira, L. F. (2020, December). The Diversity of Linear Conjugated Polyenes and Colours in Nature: Raman Spectroscopy as a Diagnostic Tool. ChemPhysChem, 22, 231–249. doi:10.1002/cphc.202000818

Martinez, J. L. (2014, March). General principles of antibiotic resistance in bacteria. Drug discovery today. Technologies, 11, 33-9.

Martínez, J. L., & Baquero, F. (2014, May). Emergence and spread of antibiotic resistance: setting a parameter space. Upsala journal of medical sciences, 119(2), 68-77.

Maurya, A. P., Rajkumari, J., Bhattacharjee, A., & Pandey, P. (2020, November). Development, spread and persistence of antibiotic resistance genes (ARGs) in the soil microbiomes through co-selection. Reviews on environmental health, 35(4), 371-378.

Mendes, A. (2019, December). Tackling antibiotic resistance. British journal of community nursing, 24(12), 612-613.

Munita, J. M., & Arias, C. A. (2016, April). Mechanisms of Antibiotic Resistance. Microbiology spectrum, 4(2).

Nang, S. C., Azad, M. A., Velkov, T., Zhou, Q. (., & Li, J. (2021, February). Rescuing the Last-Line Polymyxins: Achievements and Challenges. (E. Barker, Ed.) Pharmacological Reviews, 73, 679–728. doi:10.1124/pharmrev.120.000020

Nappier, S. P., Liguori, K., Ichida, A. M., Stewart, J. R., & Jones, K. R. (2020, October). Antibiotic Resistance in Recreational Waters: State of the Science. International journal of environmental research and public health, 17(21).

North, O. I., & Brown, E. D. (2021, July). Phage-antibiotic combinations: a promising approach to constrain resistance evolution in bacteria. Annals of the New York Academy of Sciences, 1496(1), 23-34.

Ojkic, N., Serbanescu, D., & Banerjee, S. (2022, June). Antibiotic Resistance via Bacterial Cell Shape-Shifting. mBio, 13(3), e0065922.

Olesen, S. W., Lipsitch, M., & Grad, Y. H. (2020, November). The role of "spillover" in antibiotic resistance. Proceedings of the National Academy of Sciences of the United States of America, 117(46), 29063-29068.

Pazda, M., Kumirska, J., Stepnowski, P., & Mulkiewicz, E. (2019, December). Antibiotic resistance genes identified in wastewater treatment plant systems - A review. The Science of the total environment, 697, 134023.

Piddock, L. J. (1994, February). New quinolones and gram-positive bacteria. Antimicrobial Agents and Chemotherapy, 38, 163–169. doi:10.1128/aac.38.2.163

Rather, M. A., Gupta, K., & Mandal, M. (2021, December). Microbial biofilm: formation, architecture, antibiotic resistance, and control strategies. Brazilian journal of microbiology : [publication of the Brazilian Society for Microbiology], 52(4), 1701-1718.

Rosen, T. (2011, July). Antibiotic resistance: an editorial review with recommendations. Journal of drugs in dermatology : JDD, 10, pp. 724-33. United States.

Sanz-García, F., Gil-Gil, T., Laborda, P., Blanco, P., Ochoa-Sánchez, L.-E., Baquero, F., . . . Hernando-Amado, S. (2023, October). Translating eco-evolutionary biology into therapy to tackle antibiotic resistance. Nature reviews. Microbiology, 21(10), 671-685.

Sardana, K., Gupta, T., Garg, V. K., & Ghunawat, S. (2015, July). Antibiotic resistance to Propionobacterium acnes: worldwide scenario, diagnosis and management. Expert review of anti-infective therapy, 13(7), 883-96.

Shi, X., Xia, Y., Wei, W., & Ni, B.-J. (2022, October). Accelerated spread of antibiotic resistance genes (ARGs) induced by non-antibiotic conditions: Roles and mechanisms. Water research, 224, 119060.

So, A. D., Gupta, N., & Cars, O. (2010, May). Tackling antibiotic resistance. BMJ (Clinical research ed.), 340, p. c2071. England.

Spigaglia, P., Mastrantonio, P., & Barbanti, F. (2018). Antibiotic Resistances of Clostridium difficile. Advances in experimental medicine and biology, 1050, 137-159.

Sulaiman, J. E., & Lam, H. (2022, April). Proteomics in antibiotic resistance and tolerance research: Mapping the resistome and the tolerome of bacterial pathogens. Proteomics, 22(8), e2100409.

Sundqvist, M. (2014, May). Reversibility of antibiotic resistance. Upsala journal of medical sciences, 119(2), 142-8.

Tetteh, J. N., Matthäus, F., & Hernandez-Vargas, E. A. (2020, October). A survey of within-host and between-hosts modelling for antibiotic resistance. Bio Systems, 196, 104182.

Trubenová, B., Roizman, D., Moter, A., Rolff, J., & Regoes, R. R. (2022, September). Population genetics, biofilm recalcitrance, and antibiotic resistance evolution. Trends in microbiology, 30(9), 841-852.

Tucaliuc, A., Blaga, A. C., Galaction, A. I., & Cascaval, D. (2019, March). Mupirocin: applications and production. Biotechnology Letters, 41, 495–502. doi:10.1007/s10529-019-02670-w

Vara Prasad, J. V. (2007, October). New oxazolidinones. Current Opinion in Microbiology, 10, 454–460. doi:10.1016/j.mib.2007.08.001

Velema, W. A. (2023, May). Exploring antibiotic resistance with chemical tools. Chemical communications (Cambridge, England), 59(41), 6148-6158.

Velkov, T., Dai, C., Ciccotosto, G. D., Cappai, R., Hoyer, D., & Li, J. (2018, January). Polymyxins for CNS infections: Pharmacology and neurotoxicity. Pharmacology & Therapeutics, 181, 85–90. doi:10.1016/j.pharmthera.2017.07.012

Wencewicz, T. A. (2019, August). Crossroads of Antibiotic Resistance and Biosynthesis. Journal of molecular biology, 431(18), 3370-3399.

Yang, B., Liang, J., Liu, L., Li, X., Wang, Q., & Ren, Y. (2020, December). [Overview of antibiotic resistance genes database]. Sheng wu gong cheng xue bao = Chinese journal of biotechnology, 36(12), 2582-2597.

Zeitlinger, M., Wagner, C. C., & Heinisch, B. (2009). Ketolides – The Modern Relatives of Macrolides: The Pharmacokinetic Perspective. Clinical Pharmacokinetics, 48, 23–38. doi:10.2165/0003088-200948010-00002

Zhang, R., Yang, S., An, Y., Wang, Y., Lei, Y., & Song, L. (2022, February). Antibiotics and antibiotic resistance genes in landfills: A review. The Science of the total environment, 806(Pt 2), 150647.

Zheng, M., & Lupoli, T. J. (2023, October). Counteracting antibiotic resistance enzymes and efflux pumps. Current opinion in microbiology, 75, 102334.