Evaluation Of The Antimicrobial Activity Of Lyophilized Protein Extracts From Stomopneustes Variolari By Using Sds-Page

Main Article Content

Sneha Latha Penta
Ampili Sivapriya
Meena Vangalapati

Abstract

Bioactive peptides, including antimicrobial polypeptides, lipids, and fish oil, are natural barriers to bacterial infections. These peptides increase permeability or destabilize membranes, but pathogens have developed countermeasures. Free fatty acids (FFAs) are a prominent source of antimicrobial compounds, with their spectra of action and potencies influenced by their structure and shape. Fish oil, found in marine animals, has various bioactivities, including anti-inflammatory action and increased survival for people with auto-immune diseases. A study evaluated the antimicrobial activity of lyophilized protein extracts from Stomopneustes variolaris using a well diffusion method. The antibacterial activity was assessed using gram-positive bacteria and gram-negative bacteria, while the antifungal activity was assessed using fungi. The results were analysed using one-way analysis of variance (ANOVA) and regression-correlation analysis using SPSS 10.0 software, with a 'P' value less than 0.05 considered as significant difference

Article Details

How to Cite
Sneha Latha Penta, Ampili Sivapriya, & Meena Vangalapati. (2023). Evaluation Of The Antimicrobial Activity Of Lyophilized Protein Extracts From Stomopneustes Variolari By Using Sds-Page. Journal for ReAttach Therapy and Developmental Diversities, 6(9s), 2132–2145. https://doi.org/10.53555/jrtdd.v6i9s.3369
Section
Articles
Author Biographies

Sneha Latha Penta

Research scholar, Centre for Biotechnology, Department of Chemical Engineering, AUCE(A) Andhra University Visakhapatnam, 530003, India

Ampili Sivapriya

B.Tech student, Centre for Biotechnology, Department of Chemical Engineering, AUCE(A) Andhra University Visakhapatnam, 530003, India

Meena Vangalapati

Professor, Department of Chemical Engineering, AUCE(A) Andhra University Visakhapatnam, 530003, India.

References

Lordan, S., Ross, R. P., & Stanton, C. (2011). Marine bioactives as functional food ingredients: Potential to reduce the incidence of chronic diseases. Marine Drugs, 9(6), 1056-1100.

Zasloff, M. (2002). Antimicrobial peptides of multicellular organisms. Nature, 415(6870), 389-395.

Hancock, R. E. W., & Sahl, H. G. (2006). Antimicrobial and host-defense peptides as new anti-infective therapeutic strategies. Nature Biotechnology, 24(12), 1551-1557.

Brogden, K. A. (2005). Antimicrobial peptides: Pore formers or metabolic inhibitors in bacteria? Nature Reviews Microbiology, 3(3), 238-250.

Wimley, W. C. (2010). Describing the mechanism of antimicrobial peptide action with the interfacial activity model. ACS Chemical Biology, 5(10), 905-917.

Seyfi, R., Kahaki, F. A., Ebrahimi, T., Montazersaheb, S., Eyvazi, S., Babaeipour, V., & Tarhriz, V. (2020). Antimicrobial peptides (AMPs): Roles, functions and mechanism of action. International Journal of Peptide Research and Therapeutics, 26, 1451-1463.

Raju, S. V., Sarkar, P., Kumar, P., & Arockiaraj, J. (2020). Piscidin, Fish Antimicrobial Peptide: Structure, Classification, Properties, Mechanism, Gene Regulation and Therapeutical Importance. International Journal of Peptide Research and Therapeutics, 27, 91-107.

Desbois, A. P., & Smith, V. J. (2010). Antibacterial free fatty acids: activities, mechanisms of action and biotechnological potential. Applied Microbiology and Biotechnology, 85(6), 1629-1642.

Juhl, D. W., Glattard, E., Aisenbrey, C., & Bechinger, B. (2021). Antimicrobial peptides: mechanism of action and lipid-mediated synergistic interactions within membranes. Faraday Discussions, 232, 1-15.

Yoon, B. K., Jackman, J. A., Valle-González, E. R., & Cho, N. J. (2018). Antibacterial free fatty acids and monoglycerides: Biological activities, experimental testing, and therapeutic applications. *International Journal of Molecular Sciences*, 19(4), 1114.

Galbraith, H., & Miller, T. B. (1973). Effect of long chain fatty acids on bacterial respiration and amino acid uptake. Journal of Applied Bacteriology, 36(4), 659-675.

Manasa Machavarapu, Meena Vangalapati (2015). Antibacterial activity of fermented methanolic extracts of skin of Allium cepa, 4(11), 1206-1212.

Manoj Kumar Sindiri, Manasa Machavarapu, Meena Vangalapati. (2013). Antibacterial activity of methanolic extracts of zephyranthes candida, Asian Journal of Pharmaceutical and Clinical Research, 112-113.

Shapiro, A. L., Viñuela, E., & Maizel, J. V. (1967). Molecular weight estimation of polypeptide chains by electrophoresis in SDS-polyacrylamide gels. Biochemical and Biophysical Research Communications, 28(5), 815-820.

Walker, J. M. (2002). The Protein Protocols Handbook. Humana Press.

Weber, K., & Osborn, M. (1969). The reliability of molecular weight determinations by dodecyl sulfate-polyacrylamide gel electrophoresis. Journal of Biological Chemistry, 244(16), 4406-4412.

Laemmli, U. K. (1970). Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature, 227(5259), 680-685.

Balouiri, M., Sadiki, M., & Ibnsouda, S. K. (2016). Methods for in vitro evaluating antimicrobial activity: A review. Journal of Pharmaceutical Analysis, 6(2), 71-79.

CLSI. (2012). Methods for Dilution Antimicrobial Susceptibility Tests for Bacteria That Grow Aerobically; Approved Standard—Ninth Edition. CLSI document M07-A9. Wayne, PA: Clinical and Laboratory Standards Institute.

Rinehart, K. L., Shaw, P. D., Shield, L. S., Gloer, J. B., Harbour, G. C., Koker, M. E. S., Samain, D., Schwartz, R. E., Tymiak, A. A., & Weller, D. D. (1981). Marine natural products as sources of antiviral, antimicrobial, and antineoplastic agents. Pure and Applied Chemistry, 53(4), 795-817.

Bauer, A. W., Kirby, W. M. M., Sherris, J. C., & Turck, M. (1966). Antibiotic susceptibility testing by a standardized single disk method. American Journal of Clinical Pathology, 45(4), 493-496.

Zar, J. H. (1999). Biostatistical Analysis (4th ed.). Prentice Hall.

Field, A. (2013). Discovering Statistics Using IBM SPSS Statistics (4th ed.). SAGE Publications Ltd.

Montgomery, D. C. (2017). Design and Analysis of Experiments (9th ed.). Wiley.

Hinkle, D. E., Wiersma, W., & Jurs, S. G. (2003). Applied Statistics for the Behavioral Sciences (5th ed.). Houghton Mifflin.

Cohen, J. (1988). Statistical Power Analysis for the Behavioral Sciences (2nd ed.). Lawrence Erlbaum Associates.

Ferreira, I. M. P. L. V. O., Pinho, O., Vieira, E., & Tavarela, J. G. (2002). Brewer's Saccharomyces yeast biomass: characteristics and potential applications. Trends in Food Science & Technology, 21(2), 77-84.

Bradford, M. M. (1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry, 72(1-2), 248-254.

Lowry, O. H., Rosebrough, N. J., Farr, A. L., & Randall, R. J. (1951). Protein measurement with the Folin phenol reagent. Journal of Biological Chemistry, 193(1), 265-275.

Peterson, G. L. (1977). A simplification of the protein assay method of Lowry et al. which is more generally applicable. Analytical Biochemistry, 83(2), 346-356.

Hartree, E. F. (1972). Determination of protein: A modification of the Lowry method that gives a linear photometric response. Analytical Biochemistry, 48(2), 422-427.

Markwell, M. A. K., Haas, S. M., Bieber, L. L., & Tolbert, N. E. (1978). A modification of the Lowry procedure to simplify protein determination in membrane and lipoprotein samples. Analytical Biochemistry, 87(1), 206-210.

Rinehart, K. L., Shaw, P. D., Shield, L. S., Gloer, J. B., Harbour, G. C., Koker, M. E. S., Samain, D., Schwartz, R. E., Tymiak, A. A., & Weller, D. D. (1981). Marine natural products as sources of antiviral, antimicrobial, and antineoplastic agents. Pure and Applied Chemistry, 53(4), 795-817.