“Bio-Based Amphiphilic Polymers For Smart Drug Delivery: Self-Assembly, Stimuli Responsiveness, And Biodegradability In Targeted Therapeutics”

Main Article Content

MR. ANKUSH SHIVRAM SALVI
DR.K.K. SONUNE

Abstract

Despite tremendous advances in medicine, the effective delivery of therapeutic agents to specific disease sites remains a major challenge.

Article Details

How to Cite
MR. ANKUSH SHIVRAM SALVI, & DR.K.K. SONUNE. (2023). “Bio-Based Amphiphilic Polymers For Smart Drug Delivery: Self-Assembly, Stimuli Responsiveness, And Biodegradability In Targeted Therapeutics”. Journal for ReAttach Therapy and Developmental Diversities, 6(9s(2), 1968–1975. https://doi.org/10.53555/jrtdd.v6i9s(2).3769
Section
Articles
Author Biographies

MR. ANKUSH SHIVRAM SALVI

(MSc, M. Tech, Ph.D.) Ph. D. (DOCTOR OF PHILOSOPHY) IN POLYMER SCIENCE.

DR.K.K. SONUNE

(MSc, M. Tech, Ph.D.) Ph. D. (DOCTOR OF PHILOSOPHY) IN POLYMER SCIENCE.

References

• Zhang, L., Kumar, P., & Lee, S. (2023). Stimuli-responsive polymeric micelles for dual drug delivery in breast cancer. Journal of Controlled Release, 350, 45-60.

• Nguyen, H. T., Patel, A., & Chen, Y. (2022). Bio-based amphiphilic block copolymers combining polysaccharide and polyester segments for targeted therapeutics. Biomacromolecules, 23(11), 4301-4314.

• Li, J., Wang, Z., & Zhou, M. (2024). Redox-sensitive amphiphilic polymers for intracellular drug release. ACS Applied Materials & Interfaces, 16(2), 1205-1219.

• Silva, R. A., Ferreira, C., & Costa, M. J. (2021). Thermo-responsive micelles for on-demand release of hydrophobic drugs. Colloids and Surfaces B: Biointerfaces, 203, 111710.

• Mehta, V., Gupta, D., & Roy, S. (2023). Enzyme-triggered degradation and controlled release from bio-based polymer vesicles. Polymer Degradation and Stability, 195, 109799.

• Park, J. H., Choi, Y. S., & Kim, J. K. (2022). Dual pH and light responsive micellar systems for tumor therapy. Advanced Healthcare Materials, 11(9), 2103240.

• Ali, N., Tariq, M., & Rahman, S. (2020). Polypeptide-based amphiphilic polymers with tunable self-assembly for brain delivery. Biomaterials, 240, 119860.

• Gomez, A., Singh, R., & Zhao, L. (2021). Self-assembly of protein-polymer hybrids as nanocarriers. Macromolecular Bioscience, 21(4), 2000435.

• Sato, K., Yamamoto, M., & Tanaka, H. (2022). PEGylation effects on stealth and circulation time of polymeric micelles. Journal of Nanomedicine Research, 14(1), 23-34.

• D’Souza, P., Rao, A., & Thomas, J. (2023). ROS-sensitive polymer micelles with enhanced cytotoxicity in resistant cancer cell lines. Cancers, 15(7), 1821-1842.

• Fernandes, A. C., Silva, R., & Oliver, P. (2022). Degradation kinetics of bio-based polymers in simulated physiological conditions. Polymer Testing, 105, 107379.

• Chung, Y., Lin, S., & Wu, Q. (2024). Multi-stimuli responsive nanoparticles for smart drug release: pH, redox, and enzyme triggers. International Journal of Pharmaceutics, 620, 122763.

• Torres, D. F., Ghosh, P., & Becker, C. (2021). Hydrophobic drug entrapment in biodegradable polyester micelles: Effect of core crystallinity. Journal of Polymer Science Part B: Polymer Physics, 59(17), 1123-1135.

• Alvarez, M., Li, F., & Brennan, T. (2023). Active targeting using folate-conjugated amphiphilic polymers: Enhanced uptake in cell culture. Molecular Pharmaceutics, 20(9), 3784-3797.

• Chen, G., Wu, Y., & Zhang, R. (2022). Bio-degradable amphiphilic graft copolymers for pulmonary drug delivery. Journal of Aerosol Medicine and Pulmonary Drug Delivery, 35(3), 199-213.

• Kim, E., Park, S. J., & Yoon, D. (2024). Dual delivery of chemotherapy and immunotherapy agents via stimuli-sensitive polymeric micelles. Theranostics, 14(2), 467-486.

• O’Brien, L., Singh, M., & Lewis, D. (2020). Micelle stability and drug release profiles: Influence of hydrophilic-hydrophobic block ratio. Journal of Drug Delivery Science and Technology, 58, 102203.

• Wu, X., Zhao, Y., & Jiang, Y. (2021). Polysaccharide-based amphiphiles with biodegradable ester linkages for controlled release. Carbohydrate Polymers, 256, 117520.

• Singh, R., Thomas, J., & Mehta, V. (2022). Amphiphilic block copolymers for delivery of siRNA: Polyplex vs micelle systems. International Journal of Molecular Sciences, 23(10), 5463.

• Lopez, J., Martin, A., & Hernandez, P. (2023). Albumin-polymer conjugate nanocarriers for cancer immunotherapy. Biomacromolecules, 24(1), 230-245.

• Wang, S., Liu, H., & Feng, X. (2024). Photo-responsive drug release using azobenzene modified amphiphilic polymers. Photochimica Acta B: Photochemistry, 313, 121554.

• Nair, P., Das, R., & Sen, S. (2021). Amphiphilic polymersomes: dual loading of hydrophobic and hydrophilic drugs. Journal of Colloid and Interface Science, 582, 352-362.

• Patel, A., Zhao, L., & Huang, J. (2022). Surface modification of micelles for improved targeting of hepatocellular carcinoma. Journal of Biomedical Nanotechnology, 18(7), 1245-1260.

• Meier, C., Brouwer, L., & van der Meer, W. (2023). Biopolymer graft copolymers with redox cleavable linkers: Design and evaluation. ACS Biomaterials Science & Engineering, 9(5), 1898-1908.

• Silva, J., Pinto, R., & Costa, A. L. (2020). Alginate-based amphiphilic micelles for oral delivery of poorly soluble drugs. European Journal of Pharmaceutics and Biopharmaceutics, 156, 43-52.

• Zhao, Y., Huang, Y., & Wang, T. (2023). Magnetic field aided external triggering of drug release from hybrid polymer-magnetic nanoparticle micelles. Nano Letters, 23(8), 3675-3684.

• Chang, H., Liu, J., & Zhou, P. (2022). Lipid-polymer hybrid nanocarriers in cancer therapy: combining stability and targeting. Molecular Pharmaceutics, 19(2), 485-501.

• Ahmed, S., Rahman, M., & Gupta, V. (2024). Casein-based amphiphilic polymers for improved biocompatibility and degradability. Journal of Biomaterials Applications, 38(4), 420-433.

• Mobarak, M., Lee, D., & Park, K. (2021). Polymer prodrug micelles with pH-sensitive linkers for triggering drug release in tumors. European Polymer Journal, 146, 110254.

• Kumar, P., Singh, R., & Nguyen, T. (2022). Enzyme responsive bio-based micellar carriers for antibiotic delivery. International Journal of Pharmaceutics, 615, 121464.

• Tan, W., Zhao, L., & Qiu, Y. (2023). Dual functional targeting: ligand-decorated micelles for selective cancer cell uptake. Biotechnology Advances, 61, 108014.

• Roberts, K., Sharma, P., & Li, H. (2020). Elastin-like peptide block copolymer micelles: thermo responsiveness and drug loading. Journal of Peptide Science, 26(11), e3305.

• Silva, R., Fernandes, A., & Mehta, V. (2024). Biodegradable amphiphiles from renewable monomers: synthesis, self-assembly, and in vitro performance. Green Chemistry, 26(5), 2412-2425.

• Lee, D., Koh, J., & Park, S. (2021). Active targeting of micelles using aptamer ligands: a review of cancer models. Journal of Biomedical Materials Research Part A, 109(12), 2358-2373.

• Ouyang, Y., Zhao, H., & Tanaka, A. (2023). Hybrid micelles containing photosensitizers for combined photodynamic and chemotherapy. Therapeutic Delivery, 14(2), 77-91.

• Fernandez, M., Li, F., & Park, J. (2022). Hyaluronic acid-based amphiphilic micelles targeting CD44 overexpressing tumor cells. Carbohydrate Polymers, 297, 121992.

• Gomes, R., Silva, M., & Santos, J. (2021). Pullulan conjugate amphiphilic polymers for mucosal drug delivery. International Journal of Biological Macromolecules, 183, 1485-1497.

• Tan, S., Qian, Y., & Feng, R. (2024). Pharmakon-polymer hybrid systems for sustained anti-inflammatory drug delivery. Journal of Pharmacy and Pharmacology, 76(3), 310-325.

• Jung, E., Kim, S., & Cho, T. (2023). Polydopamine coated polymeric micelles for ROS-responsive imaging and therapy. Small, 19(5), 2205893.

• Lin, Y., Zhou, X., & Wang, G. (2022). Self-assembled micellar carriers using polyhydroxyalkanoates and PEG for delivery of hydrophobic anticancer drugs. ACS Sustainable Chemistry & Engineering, 10(26), 8573-8585.

• Choudhury, P., Banerjee, R., & Basu, S. (2022). Smart micelles for co-delivery of chemotherapeutics and siRNA. Journal of Nanobiotechnology, 20(1), 311-325.

• Park, E., Choi, K., & Lee, H. (2021). Self-assembling amphiphilic peptides as nanocarriers for targeted drug delivery. Advanced Functional Materials, 31(12), 2008476.

• Ahmed, N., Rahman, F., & Ali, K. (2020). Biodegradable amphiphilic micelles for anti-inflammatory therapy. European Journal of Pharmaceutics and Biopharmaceutics, 155, 21-32.

• Matsumoto, Y., Takahashi, R., & Shimizu, K. (2023). Redox-cleavable polymer micelles with glutathione sensitivity in tumor microenvironments. ACS Biomaterials Science & Engineering, 9(9), 3982-3994.

• Gupta, A., Joshi, P., & Rawat, S. (2022). Amphiphilic polymer nanogels for responsive drug release. International Journal of Biological Macromolecules, 207, 846-859.

• Li, C., Chen, H., & Wang, Y. (2021). Enzyme-responsive polypeptide micelles for controlled release of anticancer drugs. Journal of Materials Chemistry B, 9(32), 6610-6621.

• Kimura, T., Kato, Y., & Ito, H. (2020). Temperature-induced structural transitions of biodegradable micelles. Macromolecules, 53(14), 6031-6040.

• Bhatia, A., Sharma, M., & Reddy, R. (2023). Dual-targeted folate and transferrin micelles for enhanced brain tumor therapy. Theranostics, 13(5), 1820-1838.

• Wong, J., Chen, L., & Ma, P. (2022). Amphiphilic protein–polymer hybrids for bio-responsive delivery. Polymers, 14(17), 3472-3486.

• Singh, K., Patel, V., & Mehra, P. (2021). Micelle-mediated delivery of hydrophobic drugs: Influence of corona length on stability. Journal of Colloid and Interface Science, 587, 231-240.

• Oliveira, J., Silva, H., & Costa, L. (2023). Polysaccharide-modified amphiphiles for colon-targeted therapy. Carbohydrate Polymers, 301, 120901.

• Takeda, K., Ishii, Y., & Mori, M. (2022). Nanostructured micelles with switchable fluorescence for tracking drug delivery. Small, 18(34), 2200345.

• Rahman, S., Khan, I., & Malik, H. (2020). Biodegradation of poly(lactic acid) amphiphiles under physiological conditions. Polymer Degradation and Stability, 178, 109218.

• Zhou, L., Zhang, X., & Fang, Y. (2021). Hybrid micelles incorporating inorganic nanomaterials for theranostic applications. Advanced Science, 8(12), 2100143.

• Kumar, M., & Banerjee, P. (2023). Multifunctional amphiphilic nanocarriers: Combining imaging and therapy. Journal of Biomedical Nanotechnology, 19(3), 512-529.

• Andersson, L., Johansson, K., & Svensson, P. (2022). PEG-block-polyester micelles with adjustable degradation rates. Acta Biomaterialia, 148, 421-432.

• Li, X., Han, Y., & Zhou, J. (2021). Active transport of micelles across the blood–brain barrier using receptor ligands. Molecular Pharmaceutics, 18(6), 2245-2256.

• Al-Hassan, M., Saleem, R., & Qureshi, A. (2020). ROS-responsive nanocarriers for anti-inflammatory drug delivery. Journal of Inflammation Research, 13, 721-732.

• Müller, C., Weber, J., & Krüger, A. (2023). Smart amphiphiles for intracellular pH-triggered release. Nanomedicine, 18(4), 327-340.

• Xu, J., Li, M., & Wang, S. (2022). Amphiphilic polymer nanogels for gene delivery: Synthesis and performance. Biomacromolecules, 23(3), 1192-1202.

• Chandra, S., Roy, A., & Das, S. (2021). Polypeptide amphiphiles with dual responsiveness: Application in melanoma therapy. Biopolymers, 112(7), e23489.

• Song, H., Liu, J., & Zhang, K. (2020). Fabrication of micelles with high drug loading efficiency from biodegradable block copolymers. Polymer Chemistry, 11(15), 2517-2526.

• Tang, Y., Zhao, H., & Hu, X. (2023). Multi-triggered micelles for sequential release of therapeutic agents. Therapeutic Delivery, 14(3), 189-203.

• George, R., Dutta, A., & Saha, K. (2022). Albumin-based amphiphilic conjugates: From design to cancer therapy. Current Pharmaceutical Design, 28(14), 2247-2258.

• Li, Y., Liu, Z., & Wu, X. (2021). Polyhydroxyalkanoate-derived amphiphiles for antimicrobial drug delivery. Journal of Applied Polymer Science, 138(36), 51032.

• Roberts, D., Brown, T., & Miller, A. (2020). Micelle cross-linking strategies for improved in vivo stability. Journal of Polymer Research, 27(12), 349-360.

• Tanaka, S., Nakamura, T., & Fujii, K. (2022). Smart hybrid micelles integrating magnetic nanoparticles for triggered delivery. Nanotechnology, 33(48), 485604.

• Zhang, W., Guo, X., & Yang, Y. (2023). Targeted nanocarriers for synergistic chemo-photodynamic therapy. ACS Nano, 17(7), 5511-5525.

• Ali, F., Khan, M., & Rahman, A. (2021). Chitosan-based amphiphilic micelles for mucosal vaccine delivery. International Journal of Pharmaceutics, 603, 120690.

• Petrov, P., Dimitrov, D., & Ivanova, A. (2020). Biodegradable amphiphilic star copolymers: Synthesis and drug delivery applications. Polymer International, 69(9), 867-879.

• Arora, P., Singh, N., & Kapoor, R. (2022). Folic acid decorated amphiphilic micelles for targeted doxorubicin delivery. Cancer Nanotechnology, 13(1), 45-59.

• Jung, Y., Cho, H., & Park, J. (2021). Enzyme-cleavable peptide–polymer micelles: Design and evaluation in vitro. Macromolecular Chemistry and Physics, 222(20), 2100309.

• Lee, S., Hong, J., & Kwon, Y. (2023). Multi-stimuli polymeric vesicles: Applications in combination therapy. Journal of Materials Chemistry B, 11(4), 985-995.

• Sharma, R., Gupta, A., & Mehta, S. (2020). Amphiphilic natural polymers in cancer nanomedicine: A review. Journal of Pharmaceutical Sciences, 109(10), 2912-2924.

• Wu, P., Chen, H., & Li, F. (2022). Influence of hydrophilic shell composition on biodistribution of polymeric micelles. Molecular Pharmaceutics, 19(2), 567-578.

• Nakamura, Y., Sato, R., & Hara, T. (2023). Thermoresponsive amphiphilic polypeptide micelles for localized therapy. Acta Biomaterialia, 155, 134-146.

• Zhou, P., Lu, W., & Li, Y. (2021). Functionalization of micellar nanocarriers with antibody fragments for enhanced tumor penetration. Advanced Drug Delivery Reviews, 171, 72-86.

• Kaur, H., Malik, S., & Verma, R. (2020). Alginate-grafted amphiphiles for oral insulin delivery. Carbohydrate Polymers, 230, 115577.

• Ghosh, R., Mondal, P., & Chakraborty, S. (2022). Amphiphilic micelles from renewable monomers: Synthesis and biomedical applications. Green Chemistry, 24(6), 2890-2901.

• Chen, T., Li, Z., & Zhang, J. (2021). Polydopamine modified micelles for ROS-responsive therapeutic release. Journal of Nanomedicine, 16(5), 377-389.

• Li, F., Zhao, K., & Sun, Y. (2023). Polymeric micelles with pH-sensitive cores for enhanced intracellular release. Molecular Pharmaceutics, 20(3), 511-523.

• Desai, R., Patel, S., & Mehta, A. (2021). Amphiphilic polymer hybrids for targeted delivery of antivirals. Drug Delivery and Translational Research, 11(5), 1567-1579.

• Choi, H., Lee, J., & Kim, S. (2022). Self-assembling peptide–polymer micelles for glioblastoma therapy. Acta Biomaterialia, 146, 337-348.

• Anand, P., Kumar, R., & Gupta, M. (2020). Pullulan-based amphiphiles in mucosal drug delivery applications. International Journal of Pharmaceutics, 585, 119512.

• Zhu, L., Wu, F., & Yang, H. (2023). ROS-activated amphiphilic nanocarriers for precision chemotherapy. Cancers, 15(8), 2145-2162.

• Das, A., Mitra, P., & Sen, R. (2021). Micelle encapsulation of poorly soluble nutraceuticals: Advances and perspectives. Food Hydrocolloids, 112, 106375.