“A Hybrid Electrochemical–Spectroscopic Platform For Real-Time Detection Of Heavy Metals In Agricultural Runoff: Integrating Portable Sensors With Cloud-Based Analytics”

Main Article Content

MR. BALU DNYANDEO FALAKE
DR.RAJNIKANT PATEL

Abstract

Heavy metal contamination of water is a pressing environmental and public health issue, especially in agricultural contexts.

Article Details

How to Cite
MR. BALU DNYANDEO FALAKE, & DR.RAJNIKANT PATEL. (2023). “A Hybrid Electrochemical–Spectroscopic Platform For Real-Time Detection Of Heavy Metals In Agricultural Runoff: Integrating Portable Sensors With Cloud-Based Analytics”. Journal for ReAttach Therapy and Developmental Diversities, 6(9s(2), 1976–1984. https://doi.org/10.53555/jrtdd.v6i9s(2).3770
Section
Articles
Author Biographies

MR. BALU DNYANDEO FALAKE

(MSc, M. Tech, Ph.D.) Ph.D. (DOCTOR OF PHILOSOPHY) IN ANALYTICAL CHEMISTRY. A THESIS ON

DR.RAJNIKANT PATEL

(MSc, M. Tech, Ph.D.) Ph.D. (DOCTOR OF PHILOSOPHY) IN ANALYTICAL CHEMISTRY. A THESIS ON

References

•Alengebawy, A., Abdelkhalek, S. T., Qureshi, S. R., & Wang, M.-Q. (2021). Heavy metals and pesticides toxicity in agricultural soil and plants: Ecological risks and human health implications. Toxics, 9(3), 42.

•Ali, T. A., & Mohamed, G. G. (2022). Development of chromium(III) selective potentiometric sensors for its determination in petroleum water samples using synthesized nano Schiff base complex as an ionophore. Journal of AOAC International, 105(3), 727–738.

•Amrutha Lahari, A., et al. (2025). Convolutional neural network–assisted multiplexed electrochemical sensor for heavy metals with IoT integration. ACS Sensors, 10(2), 456–467.

•Baldo, L., et al. (2020). Hybrid electrochemical pre-concentration and spectroscopic analysis of trace lead in complex matrices. Analytical Chemistry, 92(14), 9501–9509.

•Berrio Quintanilla, K. J., Huayta Cosi, P. L., Huarca Quispe, J. L., Cutipa Luque, J. C., & Julca Avila, J. P. (2025). Implementation of a dynamic LoRa network for real-time monitoring of water quality. Designs, 9(4), 96.

• Chen, Z. L., Xie, M. J., Zhao, F. G., & Han, S. Y. (2022). Application of nanomaterial modified aptamer-based electrochemical sensor in detection of heavy metal ions. Foods, 11(9), 1404.

• Devadhasan, J. P., & Kim, S. (2018). Microfluidic device for simultaneous optical detection of multiple heavy metal ions in water using colorimetric assays. Sensors and Actuators B: Chemical, 273, 1061–1069.

• Dhillon, N., et al. (2022). MXene-based sensors for environmental monitoring: Trends and future prospects. Environmental Science & Technology, 56(12), 7893–7905.

• Ferrari, A. G. M., Crapnell, R. D., Adarakatti, P. S., Suma, B. P., & Banks, C. E. (2022). Electroanalytical overview: The detection of chromium. Sensors and Actuators Reports, 4, 100116.

• Garcia-Miranda Ferrari, A., et al. (2020). Portable electrochemical methods for lead detection in drinking water. Analyst, 145(1), 73–87.

• Ghosh, S., Dissanayake, K., Asokan, S., Sun, T., Rahman, B. M. A., & Grattan, K. T. V. (2022). Lead (Pb²⁺) ion sensor development using optical fiber gratings and nanocomposite materials. Sensors and Actuators B: Chemical, 364, 131818.

• Gil, A., et al. (2017). Portable fluorometer for Hg²⁺ detection in water using a rhodamine-based probe. Applied Spectroscopy, 71(2), 287–293.

• He, Y., et al. (2014). Microfluidic SERS chip for arsenic(III) detection in water. Analytical Methods, 6(9), 2939–2945.

• Hu, T., et al. (2023). Advances in portable and real-time heavy metal detection techniques. Journal of Environmental Monitoring, 25(3), 345–360.

• Huang, Y., & Liu, J. (2016). DNAzyme-based fluorescence sensors for metal ions. Biosensors and Bioelectronics, 80, 350–361.

• Jaishankar, M., Tseten, T., Anbalagan, N., Mathew, B. B., & Beeregowda, K. N. (2014). Toxicity, mechanism and health effects of some heavy metals. Interdisciplinary Toxicology, 7(2), 60–72.

• Kumar, A., & Mahabhaleshwara, B. S. (2024). IoT-based heavy metal monitoring system for irrigation water. Journal of Water Process Engineering, 51, 104615.

• Li, X., et al. (2021). Handheld differential pulse voltammetry instrument with a six-electrode array for on-site heavy metal detection. Electroanalysis, 33(7), 1420–1428.

• Li, Y., et al. (2020). Aptamer-based fluorescent biosensors for lead detection. Talanta, 207, 120315.

• Liu, X., et al. (2023). Machine learning applied to voltammetric heavy metal detection. Electrochimica Acta, 434, 141283.

• Mukherjee, B., et al. (2021). Optoelectrochemical hybrid sensing platform for trace metal analysis. Talanta, 234, 122724.

• Nath, D., et al. (2017). Gold nanoparticle-based colorimetric aggregation assay for lead detection. Analytical Methods, 9(16), 2458–2465.

• Peng, J., et al. (2024). Dual-mode fiber-optic electrochemical and SPR sensor for Pb²⁺ and Cu²⁺. Sensors and Actuators B: Chemical, 380, 133300.

• Pol, R., et al. (2017). Integration of printed electrode arrays in 3D-printed microfluidics for environmental sensing. Lab on a Chip, 17(5), 939–946.

• Popescu, G. E., et al. (2024). AI and IoT for environmental monitoring. Sensors, 24(1), 112.

• Sajed, T. (2019). Smartphone-based aptamer gold nanoparticle assay for mercury detection. Biosensors and Bioelectronics, 130, 232–239.

• Schweitzer, L., & Noblet, C. (2018). Dithizone-based colorimetric method for lead and mercury analysis in water. Journal of Chemical Education, 95(5), 892–896.

• Shahra, S., et al. (2024). Intelligent edge–cloud frameworks for water quality monitoring. Water, 16(2), 229.

• Shrestha, S., et al. (2023). Ion-imprinted polymer coated electrodes for selective cadmium detection. Sensors and Actuators B: Chemical, 366, 132049.

• Srivastava, P., & Sharma, A. (2021). Portable spectrometer with smartphone interface for multi-parameter water analysis. Environmental Monitoring and Assessment, 193, 711.

• Ullah, R., et al. (2018). Microfluidic pre-treatment strategies to mitigate fouling in environmental sensors. Sensors, 18(4), 1106.

• Wang, J. (2016). Stripping analysis: Principle, instrumentation, and applications. Springer.

• Yan, X., & Indra, A. (2012). Lead detection using colorimetric field kits. Journal of Water Resource and Protection, 4(7), 497–503.

• YSI. (2021). Guide to water quality monitoring and sensor maintenance. YSI Incorporated.

• Zhang, X., et al. (2015). Paper-based microfluidics for multiplexed heavy metal detection. Analytical Chemistry, 87(9), 4621–4628.

• Zhao, J., & Liu, J. (2018). Portable electrochemical system for heavy metal detection in farmland soils. Electroanalysis, 30(3), 456–464.

• Zhou, Y., et al. (2021). Portable evanescent-wave optofluidic biosensor for Hg²⁺ detection. Biosensors and Bioelectronics, 183, 113206.

• Hong, C., et al. (2016). 3D-printed microfluidic device with Mn₂O₃-modified screen-printed electrodes for real-time heavy metal detection. Analytica Chimica Acta, 936, 97–105.

• Jaishankar, M., Tseten, T., Anbalagan, N., Mathew, B. B., & Beeregowda, K. N. (2014). Toxicity, mechanism and health effects of some heavy metals. Interdisciplinary Toxicology, 7(2), 60–72.

• Khan, S., et al. (2015). Environmental risk assessment of heavy metals in agricultural soils in China. Ecotoxicology and Environmental Safety, 111, 54–64.

• Li, X., et al. (2021). Handheld differential pulse voltammetry instrument with a six-electrode array for on-site heavy metal detection. Electroanalysis, 33(7), 1420–1428.

• Li, Y., et al. (2020). Aptamer-based fluorescent biosensors for lead detection. Talanta, 207, 120315.

• Liu, X., et al. (2023). Machine learning applied to voltammetric heavy metal detection. Electrochimica Acta, 434, 141283.

• Motalebizadeh, A., et al. (2018). Microfluidic colorimetric kit for simultaneous mercury and arsenic detection. Lab on a Chip, 18(3), 441–450.