Hybrid Image Enhancement and Dense Segmentation for Robust Iris Recognition Using Attention Mechanism

Main Article Content

Sushilkumar S. Salve

Abstract

Iris recognition is a highly precise biometric identification technique that exploits the unique epigenetic patterns present in the human iris. However, existing approaches often encounter challenges related to segmentation accuracy and classification efficiency. To address these limitations, this research proposes a novel iris recognition framework that emphasizes efficient segmentation and classification by integrating Convolutional Neural Networks with Sheaf Attention Networks (CSAN). The primary objective of this work is to develop an integrated framework that jointly optimizes iris segmentation and classification performance. A Dense Extreme Inception Multipath Guided Upsampling Network is employed to achieve accurate iris segmentation. Subsequently, classifiers, including convolutional neural networks enhanced with sheaf attention mechanisms, are evaluated for recognition performance. Experimental results demonstrate that the proposed approach delivers superior accuracy and robustness in iris recognition, making it well suited for secure authentication and access control applications. Comparative analysis with existing methods shows that CSAN achieves accuracy rates of 99.98%, 99.35%, 99.45%, and 99.65% across four different datasets, respectively.

Article Details

How to Cite
Sushilkumar S. Salve. (2023). Hybrid Image Enhancement and Dense Segmentation for Robust Iris Recognition Using Attention Mechanism. Journal for ReAttach Therapy and Developmental Diversities, 6(10s(2), 2398–2408. https://doi.org/10.53555/jrtdd.v6i10s(2).3846
Section
Articles
Author Biography

Sushilkumar S. Salve

Research Scholar, Electronics and Communication Engineering, Shri J.J.T. University, Rajasthan, India  Email: sushil.472@gmail.com

References

K. Nguyen, H. Proença, F. Alonso-Fernandez, Deep Learning for Iris Recognition: A Survey. arXiv Preprint arXiv:2210.05866. (2022).

J. Wei, H. Huang, Y. Wang, R. He, Z. Sun, Towards more discriminative and robust iris recognition by learning uncertain factors, IEEE Trans. Inf. Forensics Secur. 17 (2022) 865–879. doi:10.1109/tifs.2022.3154240.

S. Jamaludin, A.F. Ayob, M.F. Akhbar, A.A. Ali, M.M. Imran, S.M. Norzeli, et al., Efficient, accurate and fast pupil segmentation for pupillary boundary in Iris recognition, Adv. Eng. Softw. 175 (2023) 103352. doi:10.1016/j.advengsoft.2022.103352.

B. Karthik, G. Ramkumar, Comparison of feature extraction technique for segmentation in human iris recognition under uncontrolled environment using CNN algorithm with SVM classifier, ECS Trans. 107 (2022) 16785–16795. doi:10.1149/10701.16785ecst.

A. Boyd, S. Yadav, T. Swearingen, A. Kuehlkamp, M. Trokielewicz, E. Benjamin, et al., Post-mortem iris recognition—a survey and assessment of the state of the art, IEEE Access. 8 (2020) 136570–136593. doi:10.1109/access.2020.3011364.

N. Ahmadi, M. Nilashi, S. Samad, T.A. Rashid, H. Ahmadi, An intelligent method for Iris recognition using supervised machine learning techniques, Optics Laser Technol. 120 (2019) 105701. doi:10.1016/j.optlastec.2019.105701.

H. Hafeez, M.N. Zafar, C.A. Abbas, H. Elahi, M.O. Ali, Real-time human authentication system based on Iris recognition, Eng. 3 (2022) 693–708. doi:10.3390/eng3040047.

B. Abd El-Rahiem, F.E. Abd El Samie, M. Amin, Efficient cancellable multi-biometric recognition system based on Deep Learning and bio-hashing, Appl. Intell. 53 (2022) 1792–1806. doi:10.1007/s10489-021-03153-0.

N.D. AL-Shakarchy, H.K. Obayes, Z.N. Abdullah, Person identification based on voice biometric using deep neural network, Int. J. Inf. Technol. 15 (2022) 789–795. doi:10.1007/s41870-022-01142-1.

N. Alay, H.H. Al-Baity, Deep Learning Approach for multimodal biometric recognition system based on fusion of Iris, face, and finger vein traits, Sens. 20 (2020) 5523. doi:10.3390/s20195523.

R.H. Farouk, H. Mohsen, Y.M. El-Latif, A proposed biometric technique for improving iris recognition, Int. J. Comput. Intell. Syst. 15 (2022). doi:10.1007/s44196-022-00135-z.

S.N. Khan, S.U. Khan, O.J. Nwobodo, K.Adam. Cyran, Iris recognition through edge detection methods: Application in flight simulator user identification, Int. J. Adv. Comput. Sci. Appl. 14 (2023). doi:10.14569/ijacsa.2023.0140425.

E. Hussein Ali, H. Abbas Jaber, N. Naji Kadhim, New algorithm for localization of iris recognition using Deep Learning Neural Networks, Indonesian J. Electr. Eng. Comput. Sci. 29 (2022) 110. doi:10.11591/ijeecs.v29.i1.pp110-119.

G. Babu, P.A. Khayum, Elephant herding with whale optimization enabled orb features and CNN for Iris recognition, Multimed. Tools Appl. 81 (2021) 5761–5794. doi:10.1007/s11042-021-11746-7.

R.A. Abdulhasan, S.T. Abd Al-latief, S.M. Kadhim, Instant learning based on deep neural network with linear discriminant analysis features extraction for accurate iris recognition system, Multimed Tools Appl. (2023). doi:10.1007/s11042-023-16751-6.

E. Abdellatef, R.F. Soliman, E.M. Omran, N.A. Ismail, S.E. Elrahman, K.N. Ismail, et al., Cancelable face and Iris recognition system based on Deep Learning, Optical Quantum Electron. 54 (2022). doi:10.1007/s11082-022-03770-0.

V.C. Kagawade, S.A. Angadi, A new scheme of Polar Fast Fourier transform code for iris recognition through symbolic modelling approach, Exp. Syst. Appl. 197 (2022) 116745. doi:10.1016/j.eswa.2022.116745.

J. Sun, S. Zhao, Y. Yu, X. Wang, L. Zhou, Iris recognition based on local circular Gabor filters and multi-scale Convolution Feature Fusion Network, Multimed. Tools Appl. 81 (2022) 33051–33065. doi:10.1007/s11042-022-13098-2.

J. Sun, S. Zhao, S. Miao, X. Wang, Y. Yu, Open‐set iris recognition based on Deep Learning, IET Image Process. 16 (2022) 2361–2372. doi:10.1049/ipr2.12493.

S. Lei, B. Dong, A. Shan, Y. Li, W. Zhang, F. Xiao, Attention meta-transfer learning approach for few-shot Iris recognition, Comput. Electr. Eng. 99 (2022) 107848. doi:10.1016/j.compeleceng.2022.107848.